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Introduction

Elliptic curves and error-correcting codes are the mathematical objects investigated
in this thesis for cryptographic applications. The main focus lies on public-key cryp-
tography but also a code-based hash function is investigated. Public-key cryptog-
raphy was invented by Diffie and Hellman [DH76] in 1976 with the goal to remove
the need for in-person meetings or trusted couriers to exchange secret keys. While
symmetric cryptography uses the same key for encryption and decryption, public-
key cryptography uses a key pair consisting of a public key used for encryption and
a private key used for decryption. In order to generate lots of possible key pairs
mathematical one-way functions are used — functions which are easy to compute
but hard to invert. In practice a sender can efficiently compute a ciphertext given
the public key, but only the holder of the private key can use the hidden information
for decryption. Parameters for public-key cryptography need to be chosen in a way
that encryption and decryption can be carried out very fast. Simultaneously, those
parameters have to guarantee that it is computationally infeasible to retrieve the
original message from the ciphertext, or even worse, the private key from the public
key.
Parameters for cryptography are chosen to provide b-bit security against the best
attack known. This means that given the public key and public system parame-
ters it takes at least 2b bit operations to retrieve the original message from a given
ciphertext; or in the context of the hash function that it takes at least 2b bit opera-
tions to find a collision. The encryption and decryption algorithms in this thesis are
mostly text-book versions. Understanding the underlying mathematical problems
and structures is a fundamental object of this thesis. This thesis does not inves-
tigate protocols trying to provide security against malicious attackers who exploit
(partial) knowledge on e.g., ciphertexts or private keys. Those protocols can be
added as another layer to strengthen the security of the schemes investigated here.

Elliptic-curve cryptography

Cryptography based on groups was introduced by Diffie and Hellman [DH76] in
1976. Diffie and Hellman invented a protocol that allows two users to compute a
common key in a finite abelian group via an insecure channel. The key-exchange
protocol is based on the discrete-logarithm problem (DLP) which is, given a finitely
generated group G and two elements g, h ∈ G, to determine an integer x such that
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h = gx. Miller [Mil86] and Koblitz [Kob87] independently proposed to use for G the
group E(Fq), the rational points of an elliptic curve E over Fq.
The basic operation in elliptic-curve cryptography (ECC) is the multiplication-by-m
map [m] : E → E sending a point P to P+· · ·+P , the sum containingm summands.
The discrete-logarithm problem on an elliptic curve E is to determine an integer k
for two given points P and Q on E such that Q = [k]P .
The motivation for using elliptic curves over a finite field rather than the multiplica-
tive group F∗

q is that the DLP on elliptic curves is much harder. The best known
algorithms to solve the DLP on an elliptic curve over Fq take time exponential in
the field size log2 q whereas index-calculus attacks solve the DLP on F∗

q in time
sub-exponential in log2 q.
The ECRYPT-II Yearly Report on Algorithms and Keysizes (2009–2010) [ECR09]
recommends the following field sizes to provide 128-bit security:

• If the group used is F∗
q then the field size q should be 3248 bits.

• If the group used is E(Fq) then the field size q should be 256 bits.

Elliptic curves are used for realizing key exchange, digital signatures and cryptog-
raphy on small handheld devices such as PDAs, smart cards, etc. Current research
investigates both finite-field arithmetic and arithmetic for efficient implementation
of elliptic-curve cryptography on those devices. This thesis uses elliptic curves in
Edwards form and twisted Edwards form and shows how these achieve new speed
results; e.g., for cryptanalytic applications such as the Elliptic-Curve Method for
integer factorization.

Code-based cryptography

The most prominent example of a public-key cryptosystem is the protocol by Rivest,
Shamir and Adleman [RSA78]. The RSA protocol is used in e.g., the https protocol
on the Internet and is based on the hardness of factoring integers. RSA has received
a lot of attention and it is well understood how to choose parameters that are secure
against attacks using current computer platforms.
Research in quantum computation showed that quantum computers would dramat-
ically change the landscape: the problem of factoring integers could be solved in
polynomial time on a quantum computer using Shor’s algorithm [Sho94] while on
conventional computers the running time of the best algorithm is subexponential
and superpolynomial. Similarly the elliptic-curve discrete logarithm problem will
also have polynomial-time solutions on quantum computers. This does not mean
that quantum computers will bring an end to secure communication but it does mean
that other public-key cryptosystems need to take the place of RSA and elliptic-curve
cryptography.
The area of post-quantum cryptography studies cryptosystems that are secure against
attacks by conventional computers and quantum computers. One promising candi-
date is code-based cryptography. The basic idea was published by Robert J. McEliece
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[McE78] in 1978. Encryption in McEliece’s system is remarkably fast. The sender
simply multiplies the information vector with a matrix and adds some errors. The
receiver, having generated the code by secretly transforming a Goppa code, can use
standard Goppa-code decoders to correct the errors and recover the plaintext.

The security of the McEliece cryptosystem relies on the fact that the published code
does not come with any known structure. An attacker is faced with the classical
decoding problem which was proven NP-complete by Berlekamp, McEliece, and van
Tilborg [BMvT78] for binary codes. The classical decoding problem is assumed to
be hard on average.

An attacker does not know the secret code and thus has to decode a random-looking
code without any obvious structure. There are currently no subexponential decoding
methods known to attack the original McEliece cryptosystem. The best known
generic attacks which do not exploit any code structure rely on information-set
decoding, an approach introduced by Prange in [Pra62]. The idea is to find a set
of coordinates of a garbled vector which are error-free and such that the restriction
of the code’s generator matrix to these positions is invertible. Then, the original
message can be computed by multiplying those coordinates of the encrypted vector
by the inverse of the submatrix.

The main drawback of the McEliece cryptosystem is the large public-key size. For
128-bit security the best known attacks force a key size of 1537536 bits which is
around 192192 bytes. Of course, any off-the-shelf PC can store millions of such
keys and CPUs can easily handle the McEliece cryptosystem. The problem lies in
small devices. There are in fact implementations on embedded devices. Eisenbarth,
Güneysu, Heyse and Paar implemented an 80-bit secure instance of the McEliece
cryptosystem on a 8-bit AVR microcontroller and on a Xilinx Spartan-3AN FPGA
[EGHP09]. However, this is still ongoing research and the McEliece cryptosystem
currently cannot compete with RSA keys (3248 bits) and keys for elliptic-curve
cryptography (256 bits) when aiming at 128-bit security in the pre-quantum world.

The main objective in code-based cryptography is to reduce key sizes and to further
investigate the security of not only of the encryption scheme but also of other code-
based cryptographic applications such as the code-based hash function FSB [AFS03,
AFS05, AFG+09]. The main idea behind reducing key sizes is to find alternatives
to McEliece’s choice of classical Goppa codes. Many suggestions have been broken
as the proposed codes revealed too much structure. Most recently, [GL10] and
[FOPT10] broke many instances of [MB09]. This thesis discusses “wild Goppa codes”
as an alternative choice.

On the quantum side Bernstein describes a quantum information-set decoding at-
tack in [Ber10b]. The attack uses Grover’s quantum root-finding algorithm [Gro96,
Gro97] and forces the McEliece key size to quadruple in order to thwart this attack.
This thesis concentrates on attacks for current computer platforms and assumes, as
in recent articles on factorization and discrete logarithms, e.g., [JL06] and [JLSV06],
that large quantum computers currently do not exist.
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Overview

Part I of this thesis consists of Chapters 1–3 and deals with elliptic-curve cryptog-
raphy. Part II consists of Chapters 4–9 and covers various topics from code-based
cryptography.

In more detail, Chapter 1 gives the background on elliptic curves in Edwards and
twisted Edwards form. Twisted Edwards curves were developed in joint work with
Bernstein, Birkner, Joye, and Lange in [BBJ+08]. Moreover, fast formulas for com-
puting the 3- and 5-fold on an Edwards curve which were published as joint work
with Bernstein, Birkner, and Lange in [BBLP07] are presented in this chapter.

Chapter 2 discusses elliptic-curve single-scalar multiplication. In particular, the use
of double bases using Edwards curves is investigated. It turns out that double bases
are a useful tool for curves in, e.g., Jacobian coordinates but for inverted Edwards
coordinates single-base chains are a better choice. The results in this chapter are
joint work with Bernstein, Birkner, and Lange and appeared in [BBLP07].

Chapter 3 presents EECM, the Elliptic-Curve Method of Factorization using Ed-
wards curves which is joint work with Bernstein, Birkner, and Lange and which was
published as [BBLP08].

Chapter 4 provides the reader with background on error-correcting codes for cryptog-
raphy. The McEliece cryptosystem and the Niederreiter cryptosystem are introduced
and possible attacks are discussed.

Chapter 5 discusses information-set decoding, a generic attack against the McEliece
cryptosystem to retrieve the original ciphertext when given a McEliece public key
of a binary code. The chapter also presents the successful attack on the original
McEliece parameters which was developed and carried out together with Bernstein
and Lange. Implementations such as [EGHP09] used the parameter suggestions
provided here. The results in this chapter appeared in [BLP08]. Moreover, this
chapter carries out an asymptotic analysis of information-set decoding. It shows
that Stern’s algorithm is superior to plain information-set decoding, also with the
improvement by Lee–Brickell. This is joint work with Bernstein, Lange, and van
Tilborg and appeared in [BLPvT09].

Chapter 6 generalizes the methods discussed in Chapter 5 to arbitrary finite fields.
It is shown that codes over F31 offer advantages in key sizes compared to codes
over F2 while maintaining the same security level against all attacks known and in
particular against the attack outlined in this chapter. The results in this chapter
were published as [Pet10].

Chapter 7 pursues the topic of minimizing keys by using codes over non-binary fields.
The“Wild McEliece cryptosystem”is proposed, a variant of McEliece’s cryptosystem
using “wild Goppa codes” which are analyzed in this chapter. An efficient decoding
algorithm as well as parameters for 128-bit security are proposed in order to outline
the advantages over the classical system or the system with codes as proposed in
Chapter 6. The results in this chapter are joint work with Bernstein and Lange and
appeared in [BLP11].

Chapter 8 presents “ball-collision decoding”, a generic decoding attack against the
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McEliece cryptosystem with binary codes, which asymptotically beats the attacks
presented in Chapter 5. A detailed asymptotic analysis is presented. The results in
this chapter build on joint work with Bernstein and Lange which was published as
[BLP10].
Chapter 9 describes the code-based hash function FSB which was submitted to
NIST’s cryptographic hash function competition. This is the only chapter dealing
with symmetric cryptography. The main focus lies on applying Wagner’s generalized
birthday attack to find a collision in the compression function of FSB48, a training
case submitted by the FSB designers in their proposal [AFG+09]. The results in
this chapter are joint work with Bernstein, Lange, Niederhagen, and Schwabe and
appeared in [BLN+09].
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Part I

Elliptic-curve cryptography using
Edwards curves





Chapter 1

Edwards curves and twisted
Edwards curves

Elliptic curves have been studied for centuries. An elliptic curve over a field k
is a non-singular absolutely irreducible curve of genus 1 with a k-rational point.
Many books and articles introduce elliptic curves as non-singular curves which can
be written in Weierstrass form E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 with
a1, a2, a3, a4, a6 ∈ k. The two definitions are equivalent due to the Riemann-Roch
Theorem; see e.g., [FL05, Theorem 4.106], [Sil86, Theorem II.5.4], or [Sti09, Theo-
rem I.5.15]. The elliptic-curve group law is explained using the chord-and-tangent
method which is an explicit version of divisor-class arithmetic. This thesis deviates
from this approach and directly starts with elliptic curves in Edwards form after a
small detour to the unit circle.

For a reader looking for a broader background on elliptic-curve cryptography: the
book by Silverman [Sil86] gives a general introduction to elliptic curves. The Hand-
book of Elliptic and Hyperelliptic Curve Cryptography [CFD05], in particular [FL05],
gives an introduction to elliptic curves used for cryptography.

Note that this thesis only considers elliptic curves over non-binary fields. For readers
interested in the binary case we refer to the article by Bernstein, Lange, and Rezaeian
Farashahi who investigated binary Edwards curves in [BLF08].

First of all, the necessary background for elliptic curves in Edwards form is pre-
sented which mainly builds on the articles by Edwards [Edw07] and Bernstein and
Lange [BL07b]. Second, this chapter introduces “twisted Edwards curves” which
were developed in joint work with Bernstein, Birkner, Joye, and Lange and pub-
lished as [BBJ+08]. This chapter also presents related work by Bernstein and Lange
on inverted Edwards curves and completed Edwards curves [BL07c, BL10] as well
as Hisil et al.’s extended formulas and dual addition law for twisted Edwards curves
[HWCD08]. Moreover, this chapter provides the background for the following two
chapters and are therefore taken in parts from the articles [BBLP07] and [BBLP08]
which are both joint work with Bernstein, Birkner, and Lange.

This chapter is organized as follows:

• The preliminaries section 1.1 gives the definitions and addition laws of the
clock group and of Edwards curves. This is a general survey on Edwards
curves.

9
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• Section 1.2 presents twisted Edwards curves. The definition is given in Sec-
tion 1.2.1 and the two addition laws in Section 1.2.2. Section 1.2.3 discusses
different coordinate systems. Sections 1.2.4 and 1.2.5 are essentially taken
from [BBLP08] and describe the group structure of twisted Edwards curves
and give a characterization of points of small order; Section 1.2.6 is taken
from [BBJ+08] and relates twisted Edwards curves and Montgomery curves.

• Section 1.3 deals with arithmetic on elliptic curves in (twisted) Edwards form.
Efficient formulas from [BL07b], [BL07c], [HWCD08], [BBJ+08], [BBLP07] are
presented. Sections 1.3.3, 1.3.4, and 1.3.5 are taken in parts from [BBLP08,
Section 2].

• Sections 1.3.6 and 1.3.7 present tripling and quintupling formulas for Edwards
curves; the sections are essentially taken from [BBLP07] which is joint work
with Bernstein, Birkner and Lange.

1.1 Preliminaries

This section introduces Edwards curves and twisted Edwards curves. First the clock
group is studied in order to motivate the view of elliptic curves in Edwards form.

1.1.1 The clock

We study the clock group by considering the unit circle over the real numbers, i.e.,
all tuples (x, y) ∈ R2 with x2 + y2 = 1. Each line through the origin and a point
(x1, y1) on the unit circle makes an angle α1 from the positive y-axis in the clockwise
direction. In particular, we can rewrite (x1, y1) as (sinα1, cosα1). Two points (x1, y1)
and (x2, y2) on the unit circle are added by adding their corresponding angles α1

and α2. The well-known addition formulas for sine and cosine,

sin(α1 + α2) = sinα1 cosα2 + cosα1 sinα2,

cos(α1 + α2) = cosα1 cosα2 − sinα1 sinα2,

lead to the following addition law:

(x1, y1), (x2, y2) 7→ (x1y2 + y1x2, y1y2 − x1x2) . (1.1)

More generally, consider a field k whose characteristic does not equal 2 and consider
all tuples (x, y) ∈ k2 satisfying x2 + y2 = 1. It is easily checked that (1.1) defines a
group law on the unit circle, where O = (0, 1) is the neutral element and each point
(x1, y1) has inverse (−x1, y1). Hence the elements in k × k lying on the unit circle
together with (1.1) form a commutative group C which is called the clock group.
For cryptographic applications consider the group C over k = Fq. Geometrically
the unit circle has genus 0 and corresponds to the projective line P1(Fq). Solving
the discrete-logarithm problem for the clock group corresponds to solving the DLP
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x

y

b

b

b

b

(0, 1) neutral element

P1 = (x1, y1)

P2 = (x2, y2)

P1 + P2

α1

Figure 1.1: Clock addition.

in a subgroup of F∗
q2 . Recall that the ECRYPT-II recommendations [ECR09] advise

the underlying field to be of size around 23248 to achieve 128-bit security against
index-calculus attacks. In this case q should be a 1624-bit prime or prime power
and −1 should be a nonsquare so that the group cannot be embedded into F∗

q.
From now on this thesis deals with elliptic curves since in general there are no
subexponential attacks for the DLP known for the genus-1 case. The addition law
for the clock group will reappear in a slightly more complicated form when looking
at elliptic curves in Edwards form.

1.1.2 Edwards curves

In 2007 Edwards [Edw07], generalizing an example from Euler and Gauss, introduced
an addition law for the curves x2+y2 = c2(1+x2y2) over non-binary fields. Edwards
showed that every elliptic curve can be expressed in this form over a small finite
extension of the underlying field.

Definition 1.1. Let k be a field with char 6= 2. An elliptic curve in Edwards form,
or simply Edwards curve, over k is given by an equation

x2 + y2 = 1 + dx2y2, (1.2)

where d ∈ k \ {0, 1}.

Remark 1.2. Form (1.2) is due to Bernstein and Lange [BL07b] who generalized
the addition law in [Edw07] to work for elliptic curves with equation x2 + y2 =
c2(1 + dx2y2) and showed that they form a bigger class over a finite field than
x2 + y2 = c2(1+ x2y2). If d = d̄c̄4 then (x̄, ȳ) 7→ (c̄x, c̄y) constitutes an isomorphism
between x2 + y2 = 1 + dx2y2 and x̄2 + ȳ2 = c̄2(1 + d̄x̄2ȳ2).

Remark 1.3. Edwards curves are indeed elliptic curves. Though at a first glance
there are two non-singular points at infinity; those can be resolved and the blowup
over the extension field k(

√
d) is non-singular; see e.g., [BL10].
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Remark 1.4. If d equals 0 then one gets the unit circle; see the previous subsection.
If d = 1 then the equation x2+ y2 = 1+x2y2 splits and describes four lines. In both
cases equation (1.2) does not describe an elliptic curve.

Remark 1.5. The Edwards curve with coefficient d has j-invariant 16(1 + 14d +
d2)3/d(1− d)4.

Theorem 1.6 (Edwards addition law). Let (x1, y1), (x2, y2) be points on the Edwards
curve Ed : x

2 + y2 = 1 + dx2y2. The sum of these points on Ed is

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)

. (1.3)

The neutral element is (0, 1), and the negative of (x1, y1) is (−x1, y1).

This addition law was proven correct in [BL07b, Section 3].

Remark 1.7. The addition law (1.3) is strongly unified : i.e., it can also be used to
double a point.

x

y

b

b

b

b

(0, 1) neutral element

P1

P2

P1 + P2

Figure 1.2: Adding two points on the Edwards curve E−30 over R.

Remark 1.8. The point (0,−1) has order 2. The points (1, 0) and (−1, 0) have
order 4.

Remark 1.9. Let d be a nonsquare in k. Then by [BL07b, Theorem 3.3] the
Edwards addition law is complete, i.e., there are no inputs (x1, y1), (x2, y2) for which
the denominators 1 − dx1x2y1y2, 1 + dx1x2y1y2 are zero. In particular, if d is not
a square all rational points of an Edwards curve are affine points and the addition
is defined for any two rational points; see Remark 1.3. This means that the affine
points form a group if d is not a square.
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Remark 1.10 (Birational equivalence). Theorem 2.1 in [BL07b] shows that any
elliptic curve E having a point of order 4 over k can be written as an Edwards
curve Ed with equation (1.2) using a few rational transformations. In this case
the two curves E and Ed are birationally equivalent , i.e., there exist rational maps
φ : E −→ Ed and ψ : Ed −→ E with the property that ψ ◦ φ is the identity map on
E for all but finitely many points and φ ◦ ψ is the identity map on Ed for all but
finitely many points. Note that birationally equivalent should not be confused with
“isomorphic” in the sense of isomorphisms between algebraic varieties. However, the
rational maps φ and ψ establish an isomorphism between the function fields of E
and Ed.

Section 1.2.6 proves a similar result for twisted Edwards curves

Remark 1.11. An elliptic curve which does not have a point of order 4 over k
admits a point of order 4 over a finite extension K of k. Then there is a birational
map defined over K to an Edwards curve defined over K.

1.2 Twisted Edwards curves

This section introduces twisted Edwards curves and relates them to Edwards curves
as defined in the previous section. “Twisted Edwards curves” first appeared in
[BBJ+08] which is joint work with Bernstein, Birkner, Joye, and Lange. This section
contains the results presented in [BBJ+08]. Moreover, this section contains the
characterization of small points on twisted Edwards curves which is part of [BBLP08]
which is joint work with Bernstein, Birkner, and Lange.

1.2.1 Introduction of twisted Edwards curves

The existence of points of order 4 restricts the number of elliptic curves in Edwards
form over k. The set of Edwards curves can be embedded into a larger set of
elliptic curves of a similar shape by introducing twisted Edwards curves. Recall the
definition of a quadratic twist of an elliptic curve:

Definition 1.12. Let E and E ′ be elliptic curves which are defined over a field k.
The curve E ′ is called a twist of E if E and E ′ are isomorphic over the algebraic
closure k̄. The curve E ′ is called a quadratic twist of E if there is an isomorphism
from E to E ′ which is defined over a quadratic extension of k .

This thesis only considers quadratic twists which most of the time simply will be
called twists.

Definition 1.13 (Twisted Edwards curve). Let a and d be two nonzero distinct
elements in a non-binary field k. The twisted Edwards curve with coefficients a and
d is the curve

EE,a,d : ax
2 + y2 = 1 + dx2y2.

An Edwards curve is a twisted Edwards curve with a = 1.
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The subscript “E” in EE,a,d stands for Edwards. In Section 1.2.6 we will show
that every twisted Edwards curve is birationally equivalent to an elliptic curve in
Montgomery form, and vice versa; those curves in Montgomery form will be denoted
by EM,A,B.

Remark 1.14. The elliptic curve EE,a,d has j-invariant 16(a
2+14ad+ d2)3/ad(a−

d)4.

Remark 1.15 (Twisted Edwards curves as twists of Edwards curves). The twisted
Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2 is a quadratic twist of the Edwards
curve EE,1,d/a : x̄

2 + ȳ2 = 1 + (d/a)x̄2ȳ2. The map (x̄, ȳ) 7→ (x, y) = (x̄/
√
a, ȳ) is an

isomorphism from EE,1,d/a to EE,a,d over k(
√
a). If a is a square in k then EE,a,d is

isomorphic to EE,1,d/a over k.

Remark 1.16. More generally, EE,a,d is a quadratic twist of EE,ā,d̄ for any ā, d̄
satisfying d̄/ā = d/a. Conversely, every quadratic twist of a twisted Edwards curve
is isomorphic to a twisted Edwards curve; i.e., the set of twisted Edwards curves is
invariant under quadratic twists.

Remark 1.17. The twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2 is a
quadratic twist of (actually is birationally equivalent to) the twisted Edwards curve
EE,d,a : dx̄2 + ȳ2 = 1 + ax̄2ȳ2. The maps (x̄, ȳ) 7→ (x̄, 1/ȳ) and (x, y) 7→= (x, 1/y)
yield a birational equivalence from EE,d,a to EE,a,d. More generally, EE,a,d is a
quadratic twist of EE,ā,d̄ for any ā, d̄ satisfying d̄/ā = a/d. This generalizes the
known fact, used in [BL07b, proof of Theorem 2.1], that EE,1,d is a quadratic twist
of EE,1,1/d having the same addition law.

1.2.2 The twisted Edwards addition law

The group law for (twisted) Edwards curves can be stated in two versions. The first
one appeared in [BBJ+08] and the second in [HWCD08].

Theorem 1.18 (The twisted Edwards addition law). Let (x1, y1), (x2, y2) be points
on the twisted Edwards curve EE,a,d : ax

2+ y2 = 1+ dx2y2. The sum of these points
on EE,a,d is

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)

.

The neutral element is (0, 1), and the negative of (x1, y1) is (−x1, y1).
For the correctness of the addition law observe that it coincides with the Edwards
addition law on x̄2 + y2 = 1 + (d/a)x̄2y2 with x̄ =

√
ax which is proven correct in

[BL07b, Section 3].

Remark 1.19. These formulas also work for doubling. These formulas are complete
(i.e., have no exceptional cases) if a is a square in k and d is a nonsquare in k. We
note that the isomorphism from EE,a,d to EE,1,d/a preserves the group law; if d/a is
a nonsquare in k then the completeness follows from [BL07b, Theorem 3.1] which
showed that the Edwards addition law is complete on EE,1,d′ if d

′ is a nonsquare.
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Hisil, Wong, Carter, and Dawson in [HWCD08] substituted the coefficients a and d
in the twisted Edwards addition law by the curve equation and achieved degree-2
polynomials in the denominators.

Definition 1.20. The dual addition law

(x1, y1), (x2, y2) 7→
(
x1y1 + x2y2
y1y2 + ax1x2

,
x1y1 − x2y2
x1y2 − y1x2

)

computes the sum of two points (x1, y1) 6= (x2, y2) on the twisted Edwards curve
EE,a,d.

Remark 1.21. This dual addition law produces the same output as the Edwards
addition law when both are defined, but the exceptional cases are different. The
dual addition law never works for doublings: if (x1, y1) = (x2, y2) then the second
output coordinate (x1y1 − x2y2)/(x1y2 − y1x2) is 0/0.

1.2.3 Projective twisted Edwards curves

A polynomial f in k[x, y] is called homogeneous if all monomials have the same
total degree. Given f(x, y) ∈ k[x, y] of total degree δ one obtains a homogenized
polynomial fhom ∈ k[X, Y, Z] as fhom(X, Y, Z) = Zδf(X/Z, Y/Z).
Consider the homogenized twisted Edwards equation

Ehom
E,a,d : (aX

2 + Y 2)Z2 = Z4 + dX2Y 2.

A projective point (X1 : Y1 : Z1) with Z1 6= 0 on Ehom
E,a,d corresponds to the affine

point (X1/Z1, Y1/Z1) on EE,a,d : ax
2+y2 = 1+dx2y2. The neutral element on Ehom

E,a,d

is Ohom = (0 : 1 : 1) and the inverse of a point (X1 : Y1 : Z1) is (−X1 : Y1 : Z1).
Two points (X1 : Y1 : Z1), (X2 : Y2 : Z2) are equivalent if there is a nonzero scalar λ
such that (X1 : Y1 : Z1) = (λX2 : λY2 : λZ2). Hence one can remove denominators
in the addition formulas by multiplying with the least common multiple of the
denominators of the x and y coordinate.
Arithmetic in projective coordinates is more efficient than arithmetic in affine coor-
dinates as will be discussed in Section 1.3.
In order to achieve faster addition formulas for Edwards curves Bernstein and
Lange [BL07c] proposed an alternative way of representing Edwards curves in pro-
jective coordinates. The article [BBJ+08] generalized their “inverted coordinates” to
twisted Edwards curves.

Definition 1.22 (Inverted twisted coordinates). A point (X1 : Y1 : Z1) with
X1Y1Z1 6= 0 on the projective curve

(X2 + aY 2)Z2 = X2Y 2 + dZ4

corresponds to (Z1/X1, Z1/Y1) on the twisted Edwards curve ax2 + y2 = 1+ dx2y2.
If a = 1 these coordinates are simply called inverted coordinates .
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For contrast we refer to the former projective coordinates as standard (twisted)
Edwards coordinates.

Remark 1.23. A point (X1 : Y1 : Z1) on the projective twisted Edwards curve
(aX2 + Y 2)Z2 = Z4 + dX2Y 2 can be converted to inverted twisted Edwards coor-
dinates by computing (Y1Z1 : X1Z1 : X1Y1). Similarly, a point (X̄1 : Ȳ1 : Z̄1) on the
inverted twisted Edwards curve (X̄2 + aȲ 2)Z̄2 = X̄2Ȳ 2 + dZ̄4 can be converted to
projective twisted Edwards coordinates by computing (Ȳ1Z̄1 : X̄1Z̄1 : X̄1Ȳ1).

Remark 1.24 (Restriction). There are two extra points if d is a square, namely
(±
√
d : 0 : 1); two extra points if d/a is a square, namely (0 : ±

√

d/a : 1); and two
singular points at infinity, namely (0 : 1 : 0) and (1 : 0 : 0). Following [BL07c] we
exclude these points with the restriction X1Y1Z1 6= 0 in order to connect to twisted
Edwards curves and maintain an almost complete addition law. With the restriction
X1Y1Z1 6= 0 it is not possible to represent the affine points (0,±1) (and (±1, 0) for
a = 1) in inverted twisted coordinates; in particular, the neutral element is excluded.
These special points have to be handled differently as discussed in [BL07c].

For arithmetic in inverted twisted coordinates see Section 1.3.4.
Again motivated by faster arithmetic (see Section 1.3.5) Hisil et al. introduced a
fourth variable for the projective twisted Edwards curve.

Definition 1.25. The extended twisted Edwards curve is given by

{
(X : Y : Z : T ) ∈ P3 : aX2 + Y 2 = Z2 + dT 2 and XY = ZT

}
.

Remark 1.26. The extended points are the affine points (x1, y1), embedded into
P3 by (x1, y1) 7→ (x1 : y1 : 1 : x1y1); two extra points at infinity if d is a square,
namely (0 : ±

√
d : 0 : 1); and two extra points at infinity if a/d is a square, namely

(1 : 0 : 0 : ±
√

a/d).

Bernstein and Lange [BL10] solved the problems posed by points at infinity for the
Edwards addition law by introducing completed points.

Definition 1.27. The completed twisted Edwards curve is given by

E E,a,d =
{
((X : Z), (Y : T )) ∈ P1 × P1 : aX2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2

}
.

The completed points are the affine points (x1, y1), embedded as usual into P1 × P1

by (x1, y1) 7→ ((x1 : 1), (y1 : 1)); two extra points at infinity if d is a square, namely
((1 : ±

√
d), (1 : 0)); and two extra points at infinity if d/a is a square, namely

((1 : 0), (±
√

a/d : 1)).

Remark 1.28. The completed twisted Edwards curve does not have singularities
at infinity. The points at infinity are ((1 : 0), (±

√

a/d : 1)) and ((1 : ±
√
d), (1 : 0)).

They are defined over k(
√
ad).
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In order to map points on the completed curve to twisted Edwards curves one
needs a detour via P3. We recall for this purpose that the Segre embedding is the
embedding of the Cartesian product Pr × Ps into a subvariety of Prs+r+s respecting
the lexicographical order as ((a0, . . . , ar), (b0, . . . , bs)) 7→ (. . . , aibj , . . . ) (0 ≤ i ≤
r, 0 ≤ j ≤ s); see also [Har77, Exercise 2.14].
The completed curve maps isomorphically to the extended curve via the Segre em-
bedding ((X : Z), (Y : T )) 7→ (XT : Y Z : ZT : XY ) of P1 × P1 into P3. It maps
onto the projective curve Ehom

E,a,d via ((X : Z), (Y : T )) 7→ (XT : Y Z : ZT ), but this

map is not an isomorphism: it sends the two points ((1 : ±
√
d), (1 : 0)) to (0 : 1 : 0)

and sends the two points ((1 : 0), (±
√

a/d : 1)) to (1 : 0 : 0). The completed curve
also maps onto the inverted curve via ((X : Z), (Y : T )) 7→ (Y Z : XT : XY ), but
this map sends the two points ((0 : 1), (±1 : 1)) to (1 : 0 : 0), and sends the two
points ((±1 : 1), (0 : 1)) to (0 : 1 : 0).
Bernstein and Lange [BL10] developed a group law on the completed curve E E,a,d

which is stated in the following section.

1.2.4 The Edwards group

As discussed in Remark 1.9, if a = 1 and d is not a square then the affine Edwards
addition law is complete: the affine points (x1, y1) on the curve form a group.
However, if d is a square then the addition law is not necessarily a group law: there
can be pairs (x1, y1) and (x2, y2) where 1 + dx1x2y1y2 = 0 or 1 − dx1x2y1y2 = 0.
Even worse, there can be pairs (x1, y1) and (x2, y2) for which 1 + dx1x2y1y2 = 0 =
x1y2 + y1x2 or 1− dx1x2y1y2 = 0 = y1y2 − ax1x2. Switching from affine coordinates
to projective or inverted or extended or completed coordinates does not allow the
Edwards addition law to add such points.
There is nevertheless a standard group law for the completed curve E E,a,d in P1×P1.
One way to define the group law is through a correspondence to the traditional chord-
and-tangent group on an equivalent Weierstrass curve where one has to distinguish
several cases; but it is simpler to directly define a group law + : E E,a,d × E E,a,d →
E E,a,d. Bernstein and Lange showed in [BL10] that the Edwards addition law and
the dual addition law form a complete system of addition laws for E E,a,d: any pair
of input points that cannot be added by the Edwards addition law can be added by
the dual addition law.
The following theorem summarizes the results from [BL10]. The next section uses
this group law to characterize points of small order in E E,a,d.

Theorem 1.29. Fix a field k with char(k) 6= 2. Fix distinct nonzero elements
a, d ∈ k. Fix P1, P2 ∈ E E,a,d(k). Write P1 as ((X1 : Z1), (Y1 : T1)) and write P2 as
((X2 : Z2), (Y2 : T2)). Define

X3 = X1Y2Z2T1 +X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 − aX1X2T1T2,

T3 = Z1Z2T1T2 − dX1X2Y1Y2;
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and
X ′

3 = X1Y1Z2T2 +X2Y2Z1T1,

Z ′
3 = aX1X2T1T2 + Y1Y2Z1Z2,

Y ′
3 = X1Y1Z2T2 −X2Y2Z1T1,

T ′
3 = X1Y2Z2T1 −X2Y1Z1T2.

Then X3Z
′
3 = X ′

3Z3 and Y3T
′
3 = Y ′

3T3. Furthermore, at least one of the following
cases occurs:

• (X3, Z3) 6= (0, 0) and (Y3, T3) 6= (0, 0). Then P1 + P2 = ((X3 : Z3), (Y3 : T3)).

• (X ′
3, Z

′
3) 6= (0, 0) and (Y ′

3 , T
′
3) 6= (0, 0). Then P1 + P2 = ((X ′

3 : Z
′
3), (Y

′
3 : T ′

3)).

If P1 = P2 then the first case occurs.

1.2.5 Points of small order on E E,a,d

The complete set of addition laws from [BL10] (presented in the previous section)
enables us to investigate the order of any point.
This section characterizes all points of order 2, 3, and 4, and states conditions on
the parameters of the twisted Edwards curve for such points to exist. This section
also characterizes points of order 8 relevant to later sections.
The following theorem gives a complete study of points of order 2 and 4 in E E,a,d.

Theorem 1.30. Fix a field k with char(k) 6= 2. Fix distinct nonzero elements
a, d ∈ k. The following points are in E E,a,d(k) and have the stated orders.
Points of order 2:
The point ((0 : 1), (−1 : 1)) has order 2.
If a/d is a square in k then the points ((1 : 0), (±

√

a/d : 1)) have order 2.
There are no other points of order 2.
Points of order 4 doubling to ((0 : 1), (−1 : 1)):
If a is a square in k then the points ((1 : ±√a), (0 : 1)) have order 4 and double to
((0 : 1), (−1 : 1)).
If d is a square in k then the points ((1 : ±

√
d), (1 : 0)) have order 4 and double to

((0 : 1), (−1 : 1)).
There are no other points doubling to ((0 : 1), (−1 : 1)).
Points of order 4 doubling to ((1 : 0), (±

√

a/d : 1)): Assume that s ∈ k satisfies
s2 = a/d.
If s and −s/a are squares in k then the points ((±

√

−s/a : 1), (±√s : 1)), where
the signs may be chosen independently, have order 4 and double to ((1 : 0), (s : 1)).
There are no other points doubling to ((1 : 0), (s : 1)).

Proof. Doublings can always be computed by X3, Z3, Y3, T3 from Theorem 1.29: in
other words, all curve points ((X : Z), (Y : T )) have (2XY ZT, Z2T 2 + dX2Y 2) 6=
(0, 0) and (Y 2Z2 − aX2T 2, Z2T 2 − dX2Y 2) 6= (0, 0), so

[2]((X : Z), (Y : T ))

= ((2XY ZT : Z2T 2 + dX2Y 2), (Y 2Z2 − aX2T 2 : Z2T 2 − dX2Y 2)).
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In particular:

• [2]((0 : 1), (−1 : 1)) = ((0 : 1), (1 : 1)).

• [2]((1 : 0), (±
√

a/d : 1)) = ((0 : d(a/d)), (−a : −d(a/d))) = ((0 : 1), (1 : 1)).

• [2]((1 : ±√a), (0 : 1)) = ((0 : a), (−a : a)) = ((0 : 1), (−1 : 1)).

• [2]((1 : ±
√
d), (1 : 0)) = ((0 : d), (d : −d)) = ((0 : 1), (−1 : 1)).

• [2]((±
√

−s/a : 1), (±√s : 1)) = ((. . . : 1 + d(−s/a)s), (s − a(−s/a) : 1 −
d(−s/a)s)) = ((1 : 0), (s : 1)) since d(s/a)s = s2d/a = 1.

To see that there is no other point of order 2 or 4, observe first that every point
((X : Z), (Y : T )) on E E,a,d with X = 0 or Y = 0 or Z = 0 or T = 0 is either
((0 : 1), (1 : 1)) or one of the points doubled above. The only remaining points are
affine points ((x : 1), (y : 1)) with x 6= 0 and y 6= 0. The double of ((x : 1), (y : 1))
is ((2xy : 1 + dx2y2), (y2 − ax2 : 1− dx2y2)); but 2xy 6= 0, so this double cannot be
((0 : 1), (1 : 1)), so ((x : 1), (y : 1)) cannot have order 2. For the same reason, the
double cannot be ((0 : 1), (−1 : 1)). The only remaining case is that the double is
((1 : 0), (s : 1)) where s2 = a/d. Then ax2 + y2 = 1 + dx2y2 = 0 so ax2 = −y2; and
y2 − ax2 = s(1 − dx2y2), so 2y2 = y2 − ax2 = s(1 − dx2y2) = 2s, so y = ±√s, and
finally ax2 = −s so x = ±

√

−s/a.

Chapter 3 studies Edwards curves over the rationals Q for which ((1 : ±√a), (0 : 1))
is on the curve. In this case the points of order 8 double to either these points or to
((1 : ±

√
d), (1 : 0)).

Theorem 1.31. Fix a field k with char(k) 6= 2. Fix distinct nonzero elements
a, d ∈ k. The following points are in E E,a,d(k) and have the stated orders.
Points of order 8 doubling to ((1 : ±√a), (0 : 1)): If r ∈ k satisfies r2 = a
then any element of E E,a,d(k) doubling to ((1 : r), (0 : 1)) can be written as ((x8 :
1), (rx8 : 1)) for some x8 ∈ k satisfying adx48 − 2ax28 + 1 = 0.
Conversely, if r, x8 ∈ k satisfy r2 = a and adx48 − 2ax28 + 1 = 0 then the two points
((±x8 : 1), (±rx8 : 1)), with matching signs, have order 8 and double to ((1 : r), (0 :
1)). If also d is a square in k then the two points ((1 : ±rx8

√
d), (1 : ±x8

√
d)),

with matching signs, have order 8, double to ((1 : r), (0 : 1)), and are different from
((±x8 : 1), (±rx8 : 1)). There are no other points doubling to ((1 : r), (0 : 1)).
Points of order 8 doubling to ((1 : ±

√
d), (1 : 0)): If s ∈ k satisfies s2 = d then

any element of E E,a,d(k) doubling to ((1 : s), (1 : 0)) can be written as ((x̄8 : 1), (1 :
sx̄8)) for some x̄8 ∈ k satisfying adx̄48 − 2dx̄28 + 1 = 0.
Conversely, if s, x̄8 ∈ k satisfy s2 = d and adx̄48 − 2dx̄28 + 1 = 0, then the two points
((±x̄8 : 1), (1 : ±sx̄8)), with matching signs, have order 8 and double to ((1 : s), (1 :
0)). If also a is a square in k then the two points ((1 : ±sx8

√
a), (±x8

√
a : 1)),

with matching signs, have order 8, double to ((1 : s), (1 : 0)), and are different from
((±x̄8 : 1), (1 : ±sx̄8)). There are no other points doubling to ((1 : s), (1 : 0)).
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Proof. Every point with a zero coordinate has order at most 4 by Theorem 1.30, so
any point of order 8 has the form ((x8 : 1), (y8 : 1)), with x8 6= 0 and y8 6= 0, and
with double ((2x8y8 : 1 + dx28y

2
8), (y

2
8 − ax28 : 1− dx28y28)).

Part 1: If the double is ((1 : r), (0 : 1)) then y28−ax28 = 0 and 2x8y8r = 1+dx28y
2
8 =

ax28+y
2
8 = 2ax28 = 2r2x28. Cancel 2x8r to see that y8 = rx8. Hence adx

4
8−2ax28+1 =

dx28y
2
8 − (1 + dx28y

2
8) + 1 = 0 and the original point is ((x8 : 1), (rx8 : 1)).

Conversely, if r, x8 ∈ k satisfy r2 = a and adx48− 2ax28 + 1 = 0, then the point ((x8 :
1), (rx8 : 1)) is on the curve since ax28 + (rx8)

2 = 2ax28 = adx48 + 1 = 1 + dx28(rx8)
2,

and it doubles to ((2x8rx8 : 1 + dx28r
2x28), (r

2x28 − ax28 : . . .)) = ((2x8rx8 : 2ax
2
8), (0 :

. . .)) = ((1 : r), (0 : 1)).

The other points doubling to ((1 : r), (0 : 1)) are ((x : 1), (rx : 1)) for other x ∈ k
satisfying adx4 − 2ax2 + 1 = 0. If d is not a square in k then adx4 − 2ax2 + 1 =
adx4−(adx28+1/x28)x

2+1 = (x−x8)(x+x8)(adx2−1/x28), with adx2−1/x28 irreducible,
so the only points doubling to ((1 : r), (0 : 1)) are ((±x8 : 1), (±rx8 : 1)). If d is a
square in k then adx4 − 2ax2 + 1 = (x − x8)(x + x8)(rx

√
d − 1/x8)(rx

√
d + 1/x8)

so the only points doubling to ((1 : r), (0 : 1)) are ((±x8 : 1), (±rx8 : 1)) and
((1 : ±rx8

√
d), (1 : ±x8

√
d)). These points are distinct: otherwise ±rx28

√
d = 1 so

adx48 = 1 so 2ax28 = 2 so ax28 = 1 so y8 = 0 from the curve equation; contradiction.

Part 2: If the double of ((x̄8 : 1), (ȳ8 : 1)) is ((1 : s), (1 : 0)) then 1− dx̄28ȳ28 = 0 and
2x̄8ȳ8s = 1+dx̄28ȳ

2
8 = 2 so ȳ8 = 1/(sx̄8). Hence adx̄

4
8−2dx̄28+1 = (ax̄28−2+ȳ28)dx̄28 = 0

and the original point is ((x̄8 : 1), (1 : sx̄8)).

Conversely, if s, x̄8 ∈ k satisfy s2 = d and adx̄48 − 2dx̄28 + 1 = 0, then the point
((x̄8 : 1), (1 : sx̄8)) is on the curve since dx̄28(ax̄

2
8 + ȳ28) = dx̄28(ax̄

2
8 + 1/(s2x̄28)) =

adx̄48 + 1 = 2dx̄28 = dx̄28 + dx̄48/x̄
2
8 = dx̄28(1 + dx̄28/(s

2x̄28)) = dx̄28(1 + dx̄28ȳ
2
8)). The

point doubles to ((2sx̄28 : s
2x̄28 + dx̄28), (1− as2x̄48 : s2x̄28 − dx̄28)) = ((1 : s), (1− adx̄48 :

s2x̄28 − s2x̄28)) = ((1 : s), (1 : 0)).

The other points doubling to ((1 : s), (1 : 0)) are ((x : 1), (1 : sx)) for other x ∈ k
satisfying adx4 − 2dx2 + 1 = 0. If a is not a square in k then adx4 − 2dx2 + 1 =
adx4−(adx̄28+1/x̄28)x

2+1 = (x−x̄8)(x+x̄8)(adx2−1/x̄28), with adx2−1/x̄28 irreducible,
so the only points doubling to ((1 : s), (1 : 0)) are ((±x̄8 : 1), (1 : ±sx̄8)). If a is a
square in k then adx4 − 2dx2 + 1 = (x − x̄8)(x + x̄8)(sx

√
a − 1/x̄8)(sx

√
a + 1/x̄8)

so the only points doubling to ((1 : s), (1 : 0)) are ((±x̄8 : 1), (1 : ±sx̄8)) and
((1 : ±sx̄8

√
a)), (±x̄8

√
a : 1)). These points are distinct: otherwise ±sx̄28

√
a = 1

so adx̄48 = 1 so 2dx̄28 = 2 so dx̄28 = 1 so ax̄28 = 1 from the curve equation and in
particular ax̄28 = dx̄28. So either a = d or x̄8 = 0; contradiction.

Theorem 1.32. Fix a field k with char(k) 6= 2. Fix distinct nonzero elements
a, d ∈ k. If x3, y3 ∈ k satisfy ax23 + y23 = 1 + dx23y

2
3 = −2y3 then ((x3 : 1), (y3 : 1)) is

a point of order 3 on E E,a,d(k). Conversely, all points of order 3 on E E,a,d(k) arise
in this way.

Proof. Doublings can always be computed by X3, Z3, Y3, T3 from Theorem 1.29, as
in the proof of Theorem 1.30.
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Observe that ((x3 : 1), (y3 : 1)) ∈ E E,a,d(k) since ax
2
3 + y23 = 1 + dx23y

2
3. Now

[2]((x3 : 1), (y3 : 1)) = ((2x3y3 : 1 + dx23y
2
3), (y

2
3 − ax23 : 1− dx23y23))

= ((2x3y3 : −2y3), (2y23 + 2y3 : 2y3 + 2))

= ((−x3 : 1), (y3 : 1))

so ((x3 : 1), (y3 : 1)) has order dividing 3. It cannot have order 1 (since otherwise
x3 = 0 so y23 = 1 = −2y3), so it has order 3.
Conversely, consider any point P = ((X1 : Z1), (Y1 : T1)) of order 3 in E E,a,d(k).
The equation [2]P = −P then implies (2X1Y1Z1T1 : Z

2
1T

2
1 + dX2

1Y
2
1 ) = (−X1 : Z1).

Every point in E E,a,d with a zero coordinate has order 1, 2, or 4 by Theorem 1.30, so
X1, Z1, Y1, T1 6= 0. Define x3 = X1/Z1 and y3 = Y1/T1. Then P = ((x3 : 1), (y3 : 1));
furthermore (2x3y3 : 1 + dx23y

2
3) = (−x3 : 1) and x3 6= 0 so −2y3 = 1 + dx23y

2
3 =

ax23 + y23.

1.2.6 Montgomery curves and twisted Edwards curves

Montgomery in [Mon87, Section 10.3.1] introduced what are now called “Mont-
gomery curves” and “Montgomery coordinates” in order to gain more speed for the
Elliptic-Curve Method which will be discussed in Chapter 3.
This section shows that the set of Montgomery curves over k is equivalent to the set
of twisted Edwards curves over k. We also analyze the extent to which this is true
without twists.

Definition 1.33 (Montgomery curve). Fix a field k with char(k) 6= 2. Fix A ∈
k \ {−2, 2} and B ∈ k \ {0}. The Montgomery curve with coefficients A and B is
the curve

EM,A,B : Bv2 = u3 + Au2 + u.

Standard algorithms for transforming a Weierstrass curve into a Montgomery curve
if possible (see, e.g., [DL05, Section 13.2.3.c]) can be combined with the following
explicit transformation from a Montgomery curve to a twisted Edwards curve.

Theorem 1.34. Fix a field k with char(k) 6= 2.
(i) Every twisted Edwards curve over k is birationally equivalent over k to a Mont-
gomery curve.
Specifically, fix distinct nonzero elements a, d ∈ k. The twisted Edwards curve EE,a,d

is birationally equivalent to the Montgomery curve EM,A,B, where A = 2(a+d)/(a−d)
and B = 4/(a− d). The map (x, y) 7→ (u, v) = ((1 + y)/(1− y), (1 + y)/((1− y)x))
is a birational equivalence from EE,a,d to EM,A,B, with inverse (u, v) 7→ (x, y) =
(u/v, (u− 1)/(u+ 1)).
(ii) Conversely, every Montgomery curve over k is birationally equivalent over k to
a twisted Edwards curve.
Specifically, fix A ∈ k \ {−2, 2} and B ∈ k \ {0}. The Montgomery curve EM,A,B

is birationally equivalent to the twisted Edwards curve EE,a,d, where a = (A+ 2)/B
and d = (A− 2)/B.
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Proof. (i) Note that A and B are defined, since a 6= d. Note further that A ∈
k \ {−2, 2} and B ∈ k \ {0}: if A = 2 then a+ d = a− d so d = 0; contradiction; if
A = −2 then a + d = d− a so a = 0; contradiction. Thus EM,A,B is a Montgomery
curve.
The following script for the Sage computer-algebra system [S+10] checks that the
quantities u = (1+ y)/(1− y) and v = (1+ y)/((1− y)x) satisfy Bv2 = u3+Au2+u
in the function field of the curve EE,a,d : ax

2 + y2 = 1 + dx2y2:

R.<a,d,x,y>=QQ[]

A=2*(a+d)/(a-d)

B=4/(a-d)

S=R.quotient(a*x^2+y^2-(1+d*x^2*y^2))

u=(1+y)/(1-y)

v=(1+y)/((1-y)*x)

0==S((B*v^2-u^3-A*u^2-u).numerator())

The exceptional cases y = 1 and x = 0 occur for only finitely many points (x, y) on
EE,a,d. Conversely, let x = u/v and y = (u− 1)/(u+1); the exceptional cases v = 0
and u = −1 occur for only finitely many points (u, v) on EM,A,B.
(ii) Note that a and d are defined, since B 6= 0. Note further that a 6= 0 since
A 6= −2; d 6= 0 since A 6= 2; and a 6= d. Thus EE,a,d is a twisted Edwards curve.
Furthermore

2
a+ d

a− d = 2
A+2
B

+ A−2
B

A+2
B
− A−2

B

= A and
4

(a− d) =
4

A+2
B
− A−2

B

= B.

Hence EE,a,d is birationally equivalent to EM,A,B by (i).

Remark 1.35 (Exceptional points for the birational equivalence). The map (u, v) 7→
(u/v, (u − 1)/(u + 1)) from EM,A,B to EE,a,d in Theorem 1.34 is undefined at the
points of EM,A,B : Bv2 = u3+Au2+u with v = 0 or u+1 = 0. We investigate these
points in more detail:

• The neutral element (0, 1) on EE,a,d is mapped to the neutral element on
EM,A,B, which is the point at infinity. The point (0, 0) on EM,A,B corresponds
to the affine point of order 2 on EE,a,d, namely (0,−1). This point and (0, 1)
are the only exceptional points of the inverse map (x, y) 7→ ((1+y)/(1−y), (1+
y)/((1− y)x)).

• If (A + 2)(A − 2) is a square (i.e., if ad is a square) then there are two more
points with v = 0, namely ((−A±

√

(A+ 2)(A− 2))/2, 0). These points have
order 2. These points correspond to two points of order 2 at infinity on the
desingularization of EE,a,d.

• If (A− 2)/B is a square (i.e., if d is a square) then there are two points with
u = −1, namely (−1,±

√

(A− 2)/B). These points have order 4. These
points correspond to two points of order 4 at infinity on the desingularization
of EE,a,d.
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Every Montgomery curve EM,A,B is birationally equivalent to a twisted Edwards
curve by Theorem 1.34, and therefore to a quadratic twist of an Edwards curve. In
other words, there is a quadratic twist of EM,A,B that is birationally equivalent to
an Edwards curve.

There are two situations in which twisting is not necessary. These are summarized
in two theorems: Theorem 1.36 states that every elliptic curve having a point of
order 4 is birationally equivalent to an Edwards curve. Theorem 1.37 states that,
over a finite field k with #k ≡ 3 (mod 4), every Montgomery curve is birationally
equivalent to an Edwards curve.

Some special cases of these theorems were already known. Bernstein and Lange
proved in [BL07b, Theorem 2.1(1)] that every elliptic curve having a point of order
4 is birationally equivalent to a twist of an Edwards curve, and in [BL07b, Theo-
rem 2.1(3)] that, over a finite field, every elliptic curve having a point of order 4
and a unique point of order 2 is birationally equivalent to an Edwards curve. The
following theorem proves that the twist in [BL07b, Theorem 2.1(1)] is unnecessary,
and that the unique point of order 2 in [BL07b, Theorem 2.1(3)] is unnecessary.

Theorem 1.36. Fix a field k with char(k) 6= 2. Let E be an elliptic curve over k.
The group E(k) has an element of order 4 if and only if E is birationally equivalent
over k to an Edwards curve.

Proof. Assume that E is birationally equivalent over k to an Edwards curve EE,1,d.
The elliptic-curve addition law corresponds to the Edwards addition law; see [BL07b,
Theorem 3.2]. The point (1, 0) on EE,1,d has order 4, so E must have a point of
order 4.

Conversely, assume that E has a point (u4, v4) of order 4. As in [BL07b, Theorem 2.1,
proof], observe that u4 6= 0 and v4 6= 0; assume without loss of generality that E
has the form v2 = u3 + (v24/u

2
4 − 2u4)u

2 + u24u; define d = 1 − 4u34/v
2
4; and observe

that d /∈ {0, 1}.
The following script for the Sage computer-algebra system checks that the quantities
x = v4u/(u4v) and y = (u− u4)/(u+ u4) satisfy x

2 + y2 = 1+ dx2y2 in the function
field of E:

R.<u,v,u4,v4>=QQ[]

d=1-4*u4^3/v4^2

S=R.quotient((v^2-u^3-(v4^2/u4^2-2*u4)*u^2-u4^2*u).numerator())

x=v4*u/(u4*v)

y=(u-u4)/(u+u4)

0==S((x^2+y^2-1-d*x^2*y^2).numerator())

The exceptional cases u4v = 0 and u = −u4 occur for only finitely many points
(u, v) on E. Conversely, let u = u4(1 + y)/(1 − y) and v = v4(1 + y)/((1 − y)x);
the exceptional cases y = 1 and x = 0 occur for only finitely many points (x, y)
on EE,1,d.
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Therefore the rational map (u, v) 7→ (x, y) = (v4u/(u4v), (u − u4)/(u + u4)), with
inverse (x, y) 7→ (u, v) = (u4(1 + y)/(1 − y), v4(1 + y)/((1 − y)x)), is a birational
equivalence from E to the Edwards curve EE,1,d.

Theorem 1.37. If k is a finite field with #k ≡ 3 (mod 4) then every Montgomery
curve over k is birationally equivalent over k to an Edwards curve.

Proof. Fix A ∈ k \ {−2, 2} and B ∈ k \ {0}. We will use an idea of Okeya, Kuru-
matani, and Sakurai [OKS00], building upon the observations credited to Suyama
in [Mon87, page 262], to prove that the Montgomery curve EM,A,B has a point of
order 4. This fact can be extracted from [OKS00, Theorem 1] when #k is prime,
but to keep this thesis self-contained we include a direct proof.
Case 1: (A + 2)/B is a square. Then (as mentioned before) EM,A,B has a point

(1,
√

(A+ 2)/B) of order 4.
Case 2: (A + 2)/B is a nonsquare but (A − 2)/B is a square. Then EM,A,B has a

point (−1,
√

(A− 2)/B) of order 4.
Case 3: (A + 2)/B and (A − 2)/B are nonsquares. Then (A + 2)(A − 2) must be
square, since k is finite. The Montgomery curve EM,A,A+2 has three points (0, 0),

((−A ±
√

(A+ 2)(A− 2))/2, 0) of order 2, and a point (1, 1) of order 4, and two
points (1,±1) of order 4, so #EM,A,A+2(k) ≡ 0 (mod 8). Furthermore, EM,A,B is a
nontrivial quadratic twist of EM,A,A+2, so #EM,A,B(k)+#EM,A,A+2(k) = 2#k+2 ≡ 0
(mod 8). Therefore #EM,A,B(k) ≡ 0 (mod 8). The curve EM,A,B cannot have more
than three points of order 2, so it must have a point of order 4.
In every case EM,A,B has a point of order 4. By Theorem 1.36, EM,A,B is birationally
equivalent to an Edwards curve.

This theorem does not generalize to #k ≡ 1 (mod 4). For example, the Montgomery
curve EM,9,1 over F17 has order 20 and group structure isomorphic to Z/2 × Z/10.
This curve is birationally equivalent to the twisted Edwards curve EE,11,7, but it
does not have a point of order 4, so it is not birationally equivalent to an Edwards
curve.

Theorem 1.38. Let k be a finite field with #k ≡ 1 (mod 4). Let EM,A,B be a
Montgomery curve so that (A+ 2)(A− 2) is a square and let δ be a nonsquare.
Exactly one of EM,A,B and its nontrivial quadratic twist EM,A,δB is birationally equiv-
alent to an Edwards curve.
In particular, EM,A,A+2 is birationally equivalent to an Edwards curve.

Proof. Since (A+2)(A−2) is a square both EM,A,B and EM,A,δB contain a subgroup
isomorphic to Z/2Z× Z/2Z. This subgroup accounts for a factor of 4 in the group
order. Since #EM,A,B(k) + #EM,A,δB(k) = 2#k + 2 ≡ 4 (mod 8) exactly one of
#EM,A,B(k) and #EM,A,δB(k) is divisible by 4 but not by 8. That curve cannot have
a point of order 4 while the other one has a point of order 4. The first statement
follows from Theorem 1.36.
The second statement also follows from Theorem 1.36, since the point (1, 1) on
EM,A,A+2 has order 4.



1. Edwards curves and twisted Edwards curves 25

1.3 Arithmetic on (twisted) Edwards curves

This section shows how elliptic curves in Edwards form and twisted Edwards form
speed up elliptic-curve cryptography. In order to measure the cost of elliptic-curve
arithmetic we count how many field multiplications M, squarings S, additions a,
multiplications by a small constant factor D, and how many inversions I an arith-
metic operation on a given curve shape takes.1

The addition formulas for Edwards curves and twisted Edwards curves both involve
divisions, i.e., inversions in the field which are much more costly than additions,
multiplications or squarings. E.g., the “Explicit-Formulas Database” [BL07a] in-
cludes a cost table that assumes that one field inversion I costs as much as 100 field
multiplications M. In general, the data base counts inversions and multiplications
separately. In the following we discuss formulas which avoid inversions.

Second, this section deals with the problem of computing the m-fold of a point on an
elliptic curve in Edwards form. The naive way of computing [m]P is to repeatedly
add the point to itself. This section considers fast formulas which given a point P
on an Edwards curve yield the result of doubling , i.e., computing the 2-fold [2]P ;
tripling , i.e., computing the 3-fold [3]P ; and quintupling , i.e., computing the 5-fold
[5]P , using fewer operations.

1.3.1 Inversion-free formulas

A common way to speed up elliptic-curve arithmetic is to switch to projective coor-
dinates in order to get rid of denominators. The formulas presented in [BBJ+08] are
for Edwards curves and twisted Edwards curves. For Edwards curves multiplications
by the twisted-Edwards-curve coefficient a need not to be considered.

The sum (X3 : Y3 : Z3) of two points (X1 : Y1 : Z1), (X2 : Y2 : Z2) on E
hom
E,a,d equals

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2; E = dC ·D;

F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D);

Y3 = A ·G · (D − aC); Z3 = F ·G.

These formulas compute the sum in 10M + 1S + 2D + 7a, where the 2D are one
multiplication by a and one by d. If Z2 is known to be 1 then the multiplication
A = Z1 ·Z2 can be omitted. This is called mixed addition and takes 1M less, namely
9M+ 1S+ 2D+ 7a.

1.3.2 Doubling on twisted Edwards curves

Bernstein and Lange [BL07b] derived special formulas for doubling from the general
Edwards addition law (1.3). The doubling formulas for twisted Edwards curves

1 If the curve coefficient is small (e.g., d for Edwards curves) those multiplications can be
implemented as a few additions and thus we count them separately using D.
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in [BBJ+08] are obtained in the same way. Given a point (x1, y1) on EE,a,d : ax
2 +

y2 = 1 + dx2y2 substitute dx21y
2
1 by ax21 + y21 − 1 in the following formula:

(x1, y1), (x1, y1) 7→
(

2x1y1
1 + dx21y

2
1

,
y21 − ax21
1− dx21y21

)

=

(
2x1y1

ax21 + y21
,

y21 − x21
2− (ax21 + y21)

)

.

This substitution reduces the degree of the denominator from 4 to 2 which is reflected
in faster doublings.
Doublings on twisted Edwards curves in standard projective coordinates can be
computed as

B = (X1 + Y1)
2; C = X2

1 ; D = Y 2
1 ; E = aC;F = E +D; H = Z2

1 ;

J = F − 2H ; X3 = (B − C −D) · J ; Y3 = F · (E −D); Z3 = F · J

in 3M+ 4S+ 1D+ 7a, where the 1D is a multiplication by a and 2H is computed
as H +H .

1.3.3 Clearing denominators in projective coordinates

Here is an alternative approach to arithmetic on the twisted Edwards curve EE,a,d

when a is a square in k.
The curve EE,a,d : ax̄2 + ȳ2 = 1 + dx̄2ȳ2 is isomorphic to the Edwards curve
EE,1,d/a : x2 + y2 = 1 + (d/a)x2y2 by x =

√
ax̄ and y = ȳ; see Remark 1.15.

The following formulas add on EE,1,d/a using 10M + 1S + 3D + 7a, where the 3D
are two multiplications by a and one by d:

A = Z1 · Z2; B = aA2; H = aA; C = X1 ·X2; D = Y1 · Y2; E = dC ·D;

F = B −E; G = B + E; X3 = H · F · ((X1 + Y1) · (X2 + Y2)− C −D);

Y3 = H ·G · (D − C); Z3 = F ·G.

One can double on EE,1,d/a with 3M+4S+6a, independent of the curve coefficient
d/a, using the formulas from [BL07b, Section 4] which is the case a = 1 in the
previous subsection.
These addition formulas for EE,1,d/a are slower (by 1 multiplication by a) than the
addition formulas for EE,a,d. On the other hand, doubling for EE,1,d/a is faster (by
1 multiplication by a) than doubling for EE,a,d. Some applications (such as batch
signature verification) have more additions than doublings, while other applications
have more doublings than additions, so all of the formulas are of interest.

1.3.4 Inverted twisted Edwards coordinates

Arithmetic in inverted twisted Edwards coordinates (or inverted Edwards coordinates
if a = 1) saves 1M in addition compared to standard coordinates.
The following formulas from [BBJ+08] generalize the formulas in [BL07c] to twisted
Edwards curves.
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Remark 1.39 (Addition in inverted twisted coordinates). The following formulas
compute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) in 9M + 1S + 2D + 7a,
where the 2D are one multiplication by a and one by d:

A = Z1 · Z2; B = dA2; C = X1 ·X2; D = Y1 · Y2; E = C ·D;

H = C − aD; I = (X1 + Y1) · (X2 + Y2)− C −D;

X3 = (E +B) ·H ; Y3 = (E − B) · I; Z3 = A ·H · I.

Remark 1.40 (Doubling in inverted twisted coordinates). The following formulas
compute (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1) in 3M+ 4S+ 2D+ 6a, where the 2D are
one multiplication by a and one by 2d:

A = X2
1 ; B = Y 2

1 ; U = aB; C = A+ U ; D = A− U ;
E = (X1 + Y1)

2 −A−B; X3 = C ·D; Y3 = E · (C − 2dZ2
1); Z3 = D ·E.

Compared to doubling in inverted Edwards coordinates the inverted twisted coordi-
nates need 1D extra. Again, this is worthwhile if both a and d are small.

Remark 1.41 (Clearing denominators in inverted coordinates). The following for-
mulas add in inverted coordinates on EE,1,d/a using 9M+ 1S+ 3D+ 7a, where the
3D are two multiplications by a and one by d:

A = Z1 · Z2; B = dA2; C = X1 ·X2; D = Y1 · Y2; E = aC ·D;

H = C −D; I = (X1 + Y1) · (X2 + Y2)− C −D;

X3 = (E +B) ·H ; Y3 = (E − B) · I; Z3 = aA ·H · I.

1.3.5 Extended points

Hisil, Wong, Carter, and Dawson in [HWCD08] introduced extended addition for-
mulas costing only 9M+ 1D+ 6a for the coordinates defined in Remark 1.26:

A = X1 ·X2; B = Y1 · Y2; C = Z1 · T2; D = T1 · Z2;

E = D + C; F = (X1 − Y1) · (X2 + Y2) +B − A; G = B + aA;

H = D − C; X3 = E · F ; Y3 = G ·H ; Z3 = F ·G; T3 = E ·H.

These formulas save 1S by switching from inverted coordinates to extended coordi-
nates, and an extra 1D by switching from the Edwards addition law to the dual
addition law. Hisil et al. also introduced addition formulas costing only 8M for the
case a = −1.
A doubling in extended coordinates loses 1M for computing the extended output
coordinate T3. However, the doubling formulas make no use of the extended in-
put coordinate T1, so if the input is not used for anything else then the operation
producing that input can skip the computation of T1, saving 1M.
Scalar multiplication can be carried out as a series of operations on an accumulator
P : doublings replace P by 2P , and double-and-add operations replace P by 2P +Q.
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If P is in projective coordinates and the precomputed points Q are in extended
coordinates then doubling costs 3M + 4S + 1D and double-and-add costs (3M +
4S+ 1D) + (9M+ 1D), with the 1M loss in doubling cancelled by the 1M savings
in addition. This mixture of projective coordinates and extended coordinates was
suggested in [HWCD08] and is used in EECM-MPFQ which will be described in
Chapter 3.

1.3.6 Tripling on Edwards curves

The article [BBLP07] describes tripling formulas for Edwards curves which are faster
than one doubling followed by an addition.
By applying the curve equation as for doubling one obtains

[3](x1, y1) =

(
((x21 + y21)

2 − (2y1)
2)x1

4(x21 − 1)x21 − (x21 − y21)2
,

((x21 + y21)
2 − (2x1)

2)y1
−4(y21 − 1)y21 + (x21 − y21)2

)

. (1.4)

For tripling we present two sets of formulas to do this operation in standard Edwards
coordinates. The first one costs 9M+4S while the second needs 7M+7S. If the S/M
ratio is small, specifically below 2/3, then the second set is better while for larger
ratios the first one is to be preferred. In general we assume that one squaring S costs
as much as 0.8M. We omit counting a as multiplications and squaring dominate the
cost.
Here are 9M+ 4S formulas for tripling:

A = X2
1 ; B = Y 2

1 ; C = (2Z1)
2; D = A+B; E = D2; F = 2D · (A−B);

G = E − B · C; H = E −A · C; I = F +H ; J = F −G;
X3 = G · J ·X1; Y3 = H · I · Y1; Z3 = I · J · Z1.

Here are 7M+ 7S formulas for tripling:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A+B; E = D2; F = 2D · (A− B);

K = 4C; L = E − B ·K; M = E − A ·K; N = F +M ; O = N2; P = F − L;
X3 = 2L · P ·X1; Y3 =M · ((N + Y1)

2 −O −B); Z3 = P · ((N + Z1)
2 −O − C).

Hisil, Carter, and Dawson [HCD07] independently found tripling formulas for Ed-
wards curves, needing 9M+ 4S.
We do not state a generalization of these tripling formulas to twisted Edwards curves.
The twisted-Edwards-curve coefficient a spoils both numerator and denominator
of (1.4) and does not lead to competitive formulas. We will see in Chapter 2 that
scalar multiplication with large scalars on Edwards curves only relies on fast addition
and doubling.

1.3.7 Quintupling on Edwards curves

This section shows how to efficiently compute the 5-fold of a point on an Edwards
curve. In [BBLP07] we presented two different versions which lead to the same result
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but have a different complexity. The first version needs 17M + 7S while version 2
needs 14M+ 11S. The second version is better if S/M is small.
The following formulas for quintupling need 17M+ 7S:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A+B;

E = 2C −D; F = D · (B − A); G = E · ((X1 + Y1)
2 −D);

H = F 2; I = G2; J = H + I; K = H − I; L = J ·K;

M = D · E; N = E · F ; O = 2M2 − J ; P = 4N ·O;
Q = 4K ·N · (D − C); R = O · J ; S = R +Q; T = R−Q;
X5 = X1 · (L+B · P ) · T ; Y5 = Y1 · (L− A · P ) · S; Z5 = Z1 · S · T.

These formulas do not have minimal degree. The 17M + 7S variables X5, Y5, Z5

in the last line above have total degree 33 in the initial variables X1, Y1, Z1, even
though one would expect degree 52. In fact, X5, Y5, Z5 are all divisible by the degree-
8 polynomial ((X2

1−Y 2
1 )

2+4Y 2
1 (Z

2
1−Y 2

1 ))((X
2
1−Y 2

1 )
2+4X2

1(Z
2
1−X2

1 )). Minimizing
the number of operations led to better results for our extended polynomials.
The second set of formulas needing 14M + 11S for quintupling have even bigger
degree, namely total degree 37:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A+B; E = 2C −D;

F = A2; G = B2; H = F +G; I = D2 −H ; J = E2;

K = G− F ; L = K2; M = 2I · J ; N = L+M ; O = L−M ;

P = N ·O; Q = (E +K)2 − J − L; R = ((D + E)2 − J −H − I)2 − 2N ;

S = Q ·R; T = 4Q · O · (D − C); U = R ·N ; V = U + T ; W = U − T ;
X5 = 2X1 · (P +B · S) ·W ; Y5 = 2Y1 · (P −A · S) · V ; Z5 = Z1 · V ·W.

Note that only variables A, . . . , E have the same values in the two versions.
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Chapter 2

Analyzing double-base
elliptic-curve single-scalar
multiplication

The most important operation for elliptic-curve cryptography is single-scalar multi-
plication, i.e., sending a point P to its m-fold [m]P . We can influence how to effi-
ciently compute [m]P by choosing a curve shape (e.g., Edwards curves, Weierstrass
form), a coordinate system (e.g., inverted Edwards coordinates, Jacobian coordi-
nates), algorithms such as double-and-add, double-base chains, or sliding-window
methods. We will introduce these techniques and shapes in the following and show
how they go together.
The motivation for the comparison described in this chapter was the finding of
fast tripling formulas for Edwards curves, introduced in Section 1.3.6. Tripling
itself is not a very interesting operation for cryptographic purposes. This chapter
investigates for which curve shapes it makes sense to carry out scalar multiplication
using a chain of doublings and triplings.
The main differences between the content of this chapter and [BBLP07] are the
following.

• The background on Edwards curves is omitted as it was handled in the previous
section.

• The tripling and quintupling formulas for Edwards curves were already given
in Sections 1.3.6 and 1.3.7.

• Section 2.2 gives background on single-base chains in the form of the double-
and-add algorithm. This part is added here to give a broader overview. How-
ever, the main focus of this chapter is the analysis of double-base chains in
combination with various other techniques for various curve shapes.

The current speed records for elliptic-curve arithmetic are contained in Hisil’s Ph.D.
thesis [His10] and the“Explicit-Formulas Database”(EFD) [BL07a] by Bernstein and
Lange. Also Imbert and Philippe conducted more research on double-base chains in
[IP10] since [BBLP07] was published.
We nevertheless present the findings of [BBLP07] as they give a complete comparison
between curve shapes and fastest formulas where we have to restrict “fastest” to end
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2007. Note that Edwards curves and in particular inverted Edwards coordinates still
provide one of the fastest formulas for elliptic-curve cryptography.

2.1 Fast addition on elliptic curves

There is a vast literature on elliptic-curve arithmetic. See [DL05, BSS99, HMV04] for
overviews of efficient group operations on elliptic curves, and [BL07b, Section 6] for
an analysis of Edwards-curve-scalar-multiplication performance without triplings.

Those overviews are not a satisfactory starting point for our analysis, because they
do not include recent improvements in curve shapes and in addition formulas. Fortu-
nately, all of the latest improvements have been collected into the“Explicit-Formulas
Database” (EFD) [BL07a] by Bernstein and Lange, with Sage scripts verifying the
correctness of the formulas. For example, this database also includes the tripling
formulas from Section 1.3.6, the tripling formulas from [BL07c] for inverted Edwards
coordinates, and the formulas from [HCD07] for other systems.

2.1.1 Jacobian coordinates

Let k be a field of characteristic at least 5. Every elliptic curve over k can then
be written in short Weierstrass form E : y2 = x3 + a4x + a6, a4, a6 ∈ k, where
f(x) = x3 + a4x+ a6 is squarefree. The set E(k) of k-rational points of E is the set
of tuples (x1, y1) satisfying the equation together with a point P∞ at infinity.

The most popular representation of an affine point (x1, y1) ∈ E(k) is as Jacobian
coordinates (X1 : Y1 : Z1) satisfying Y 2

1 = X3
1 + a4X1Z

2
1 + a6Z

6
1 and (x1, y1) =

(X1/Z
2
1 , Y1/Z

3
1). An addition of generic points (X1 : Y1 : Z1) and (X2 : Y2 : Z2)

in Jacobian coordinates costs 11M + 5S. A readdition—i.e., an addition where
(X2 : Y2 : Z2) has been added before—costs 10M + 4S, because Z2

2 and Z3
2 can

be cached and reused. A mixed addition—i.e., an addition where Z2 is known to
be 1—costs 7M + 4S. A doubling—i.e., an addition where (X1 : Y1 : Z1) and
(X2 : Y2 : Z2) are known to be equal—costs 1M+ 8S. A tripling costs 5M+ 10S.

If a4 = −3 then the cost for doubling changes to 3M + 5S and that for tripling
to 7M+ 7S. Not every curve can be transformed to allow a4 = −3 but important
examples such as the NIST curves [P1300] make this choice. Note that the NIST
recommendations speak of “projective curves”; we comment that these NIST curves
have weights 2 and 3 for x and y. Thus those NIST curves are from now on refered
to as Jacobian-3.

Most of the literature presents slower formulas producing the same output, and
correspondingly reports higher costs for arithmetic in Jacobian coordinates. See,
for example, [P1300, Section A.10.4] and the aforementioned overviews. We include
the slower formulas in our experiments to simplify the comparison of our results to
previous results in [DI06] and [DIM05] and to emphasize the importance of using
faster formulas. We refer to the slower formulas as Std-Jac and Std-Jac-3.
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Curve shape ADD reADD mADD DBL TRI

3DIK 11M+ 6S 10M+ 6S 7M+ 4S 2M+ 7S 6M+ 6S
Edwards 10M+ 1S 10M+ 1S 9M+ 1S 3M+ 4S 9M+ 4S
ExtJQuartic 8M+ 3S 8M+ 3S 7M+ 3S 3M+ 4S 4M+ 11S
Hessian 12M+ 0S 12M+ 0S 10M+ 0S 7M+ 1S 8M+ 6S
InvEdwards 9M+ 1S 9M+ 1S 8M+ 1S 3M+ 4S 9M+ 4S
JacIntersect 13M+ 2S 13M+ 2S 11M+ 2S 3M+ 4S 4M+ 10S
Jacobian 11M+ 5S 10M+ 4S 7M+ 4S 1M+ 8S 5M+ 10S
Jacobian-3 11M+ 5S 10M+ 4S 7M+ 4S 3M+ 5S 7M+ 7S
Std-Jac 12M+ 4S 11M+ 3S 8M+ 3S 3M+ 6S 9M+ 6S
Std-Jac-3 12M+ 4S 11M+ 3S 8M+ 3S 4M+ 4S 9M+ 6S

Table 2.1: Cost of addition (ADD), readdition (reADD), mixed addition (mADD),
doubling (DBL), and tripling (TRI) for various curve shapes.

2.1.2 More coordinate systems

Several other representations of elliptic curves have attracted attention because they
offer faster group operations or extra features such as unified addition formulas that
also work for doublings. Some of these representations can be reached through
isomorphic transformation for any curve in Weierstrass form while others require,
for example, a point of order 4. Our analysis includes all of the curve shapes listed
in Table 2.1. “ExtJQuartic” and “Hessian” and “JacIntersect” refer to the latest
addition formulas for Jacobi quartics Y 2 = X4 + 2aX2Z2 + Z4, Hessian curves
X3 + Y 3 + Z3 = 3dXY Z, and Jacobi intersections S2 + C2 = T 2, aS2 +D2 = T 2.
The EFD [BL07a] takes the improvements in [Duq07] and [HCD07] into account.

“3DIK” is an abbreviation for “tripling-oriented Doche/Icart/Kohel curves,” the
curves Y 2 = X3 + a(X + Z2)2Z2 introduced in [DIK06]. (The same article also
introduces doubling-oriented curves that do not have fast additions or triplings and
that are omitted from our comparison.)

We note that [DIK06] states incorrect formulas for doubling. The corrected and
faster formulas are:

B = X2
1 ; C = 2a · Z2

1 · (X1 + Z2
1 ); D = 3(B + C); E = Y 2

1 ; F = E2;

Z3 = (Y1 + Z1)
2 −E − Z2

1 ; G = 2((X1 + E)2 −B − F );
X3 = D2 − 3a · Z2

3 − 2G; Y3 = D · (G−X3)− 8F ;

which are now also included in the EFD [BL07a].
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2.2 Double-base chains for single-scalar multipli-

cation

This section reviews the previous state of the art in double-base chains for computing
[m]P given P . Abusing notation we write mP instead of [m]P for the sake of
simplicity.
The following computation methods can be used to compute multiples of elements
in arbitrary additive abelian groups. So, we do not rely on any curve shape or
coordinate system in this section.

2.2.1 Single-base scalar multiplication

The classical double-and-add algorithm computes mP by carrying out doublings
and additions depending on the binary representation of the scalar m.

Algorithm 2.1: Double-and-add algorithm

Input: A point P on an elliptic curve E and a scalar m > 0 in its binary
representation (mℓ−1 . . .m0)2.

Output: The point mP ∈ E.
1: Q← O and i← ℓ− 1
2: While i ≥ 0
3: Q← 2Q
4: If mi = 1 then
5: Q← P +Q
6: i← i− 1
7: Return Q

Consider the scalar 314159 = 218+215+214+211+29+28+25+23+22+21+20. The
“base-2” chain

314159P=2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2P ))

+P )+P )))+P ))+P )+P )))+P ))+P )+P )+P )+P

computes 314159P using the double-and-add method, starting from P , with a chain
of 18 doublings and 10 additions of P .
The first step to save arithmetic operations is to allow subtractions in the computa-
tion chain. This saves two additions in our example (note that we count subtractions
as additions):

314159P = 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2P )

+P ))−P )))+P )+P ))−P )))+P )+P ))))−P.
One can express this chain more concisely—with an implicit application of Horner’s
rule—as

314159P = 218P + 216P − 214P + 211P + 210P − 28P + 25P + 24P − 20P.
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Any such representation with a single base point is called a single-base chain.
For a reader interested in speeding up elliptic-curve scalar multiplication using single-
base chains we refer to [DL05]; a more recent analysis of the use of single-base chains
which also includes Edwards curves we refer to [BL08]. The remainder of this chapter
deals with double-base chains which will be introduced in the following.

2.2.2 Double-base scalar multiplication

The “double-base-2-and-3” equation

314159P = 21532P + 21132P + 2831P + 2431P − 2030P

= 3(2(2(2(2(2(2(2(2(3(2(2(2(2(2(2(2(P )))) + P )))) + P )))) + P ))))) − P

can be viewed as a better algorithm to compute 314159P , starting from P , with a
chain of 2 triplings, 15 doublings, and 4 additions of P . If 1 tripling has the same
cost as 1 doubling and 1 addition then this chain has the same cost as 17 doublings
and 6 additions which is fewer operations than the 18 doublings and 8 additions of
P needed in the base-2 expansion.
One can object to this comparison by pointing out that adding mP for m > 1 is
more expensive than adding P —typically P is provided in affine form, allowing a
mixed addition of P , while mP requires a more expensive non-mixed addition—so a
tripling is more expensive than a doubling and an addition of P . But this objection
is amply answered by dedicated tripling formulas that are less expensive than a
doubling and an addition. See Sections 1.3 and 2.1.
Double-base chains were introduced by Dimitrov, Imbert, and Mishra in an arti-
cle [DIM05] at Asiacrypt 2005. There were several previous “double-base number
system” articles expanding mP in various ways as

∑
ci2

ai3biP with ci ∈ {−1, 1};
the critical advance in [DIM05] was to require a1 ≥ a2 ≥ a3 ≥ · · · and b1 ≥ b2 ≥
b3 ≥ · · · , allowing a straightforward chain of doublings and triplings without the
expensive backtracking that plagued previous articles.
There are a few issues in comparing single base to double base. One can object
that the benefit of fast double-base chains is outweighed by the cost of finding
those chains. Perhaps this objection will be answered someday by an optimized
algorithm that finds a double-base chain in less time than is saved by applying
that chain. We rely on a simpler answer: we focus on cryptographic applications
in which the same m is used many times (as in [DH76, Section 3]), allowing the
chain for m to be constructed just once and then reused. The software used for
the experiments in [BBLP07] has not been heavily optimized but takes under a
millisecond to compute an expansion of a cryptographic-size integer m.
A more troubling objection is that the simple base-2 chains described above were
obsolete before the advent of double-base chains. Typical speed-oriented elliptic-
curve software instead uses “sliding window” base-2 chains that use marginally more
temporary storage but considerably fewer additions— see below. Even if double-
base chains are faster than obsolete base-2 chains, there is no reason to believe that
they are faster than state-of-the-art sliding-window base-2 chains.
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2.2.3 Sliding window

The “sliding-window base-2” equation

314159P = 2165P − 2117P + 283P + 243P − 20P

= 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(5P ))))) − 7P ))) + 3P )))) + 3P )))) − P

can be viewed as an algorithm to compute 314159P starting from {P, 3P, 5P, 7P}
with a chain of 16 doublings and 4 additions. It can therefore be viewed as an
algorithm to compute 314159P , starting from P , with 17 doublings and 7 additions;
this operation count includes the obvious chain of 1 doubling and 3 additions to
produce 2P, 3P, 5P, 7P from P .
The idea of starting with {P, 2P, 3P, 4P, . . . , (2w − 1)P} (“fixed length-w window”)
was introduced by Brauer long ago in [Bra39]. By optimizing the choice of w as
a function of the bit length ℓ, Brauer showed that one can compute mP for an
ℓ-bit integer m using ≈ ℓ doublings and at most ≈ ℓ/ log2 ℓ additions (even without
subtractions). The idea to start with {P, 2P, 3P, 5P, 7P, . . . , (2w − 1)P} (“sliding
length-w window”) was introduced by Thurber in [Thu73], saving some additions.
For comparison, the simple base-2 chains considered earlier use ≈ ℓ doublings and
≈ ℓ/3 additions (on average; as many as ℓ/2 in the worst case). The benefit of the
sliding-window method increases slowly with ℓ.
Doche and Imbert, in their article [DI06] at Indocrypt 2006, introduced an analogous
improvement to double-base chains. Example: The “sliding-window double-base-2-
and-3” equation

314159P = 212333P − 27335P − 24317P − 2030P

= 3(2(2(2(2(3(3(2(2(2(2(2(2(2(2(3P )))))− 5P )))))− 7P )))))− P

can be viewed as an algorithm to compute 314159P starting from {P, 3P, 5P, 7P}
with a chain of 3 triplings, 12 doublings, and 3 additions. It can therefore be viewed
as an algorithm to compute 314159P , starting from P , with 3 triplings, 13 doublings,
and 6 additions. (The set {P, 3P, 5P, 7P} was not considered in [DI06]; we use
this example to emphasize the analogy between single-base chains and double-base
chains.)
Doche and Imbert state an algorithm to compute double-base chains for arbitrary
coefficient sets S containing 1. In their experiments they focus on sets of the form
{1, 2, 3, 22, 32, . . . , 2k, 3k} or sets of odd integers co-prime to 3. In this chapter we
study several coefficient sets including all sets considered in [DI06] and additional
sets such as {P, 2P, 3P, 5P, 7P}.

2.2.4 Computing a chain

Finding the chain 314159 = 218 + 216 − 214 + 211 + 210 − 28 + 25 + 24 − 20 is a
simple matter of finding the closest power of 2 to 314159, namely 218 = 262144;
then finding the closest power of 2 to the difference |314159− 262144| = 52015,
namely 216 = 65536; and so on.
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Similarly, by inspecting the first few bits of a nonzero integer m one can easily see
which of the integers

± 1, ± 2, ± 22, ± 23, ± 24, . . .

± 3, ± 2 · 3, ± 223, ± 233, ± 243, . . .

± 5, ± 2 · 5, ± 225, ± 235, ± 245, . . .

± 7, ± 2 · 7, ± 227, ± 237, ± 247, . . .

is closest to m. By subtracting that integer from m and repeating the same process
one expands m into Thurber’s base-2 sliding-window chain

∑

i ci2
ai with ±ci ∈

{1, 3, 5, 7} and a1 > a2 > a3 > · · · . For example, 216 · 5 = 327680 is closest to
314159; −211 · 7 = −14336 is closest to 314159 − 327680 = −13521; continuing in
the same way one finds the chain 314159 = 2165P − 2117P + 283P + 243P − 20P
shown above. Similar comments apply to sets other than {1, 3, 5, 7}.
Dimitrov, Imbert, and Mishra in [DIM05, Section 3] proposed a similar, although
slower, algorithm to find double-base chains with ci ∈ {−1, 1}; Doche and Imbert
in [DI06, Section 3.2] generalized the algorithm to allow a wider range of ci. For
example, given m and the set {1, 3, 5, 7}, the Doche-Imbert algorithm finds the
product c12

a13b1 closest to m, with ±c1 ∈ {1, 3, 5, 7}, subject to limits on a1 and
b1; it then finds the product c22

a23b2 closest to m− c12a13b1, with ±c2 ∈ {1, 3, 5, 7},
subject to the chain conditions a1 ≥ a2 and b1 ≥ b2; continuing in this way it expands
m as

∑

i ci2
ai3bi with ±ci ∈ {1, 3, 5, 7}, a1 ≥ a2 ≥ · · · , and b1 ≥ b2 ≥ · · · .

(The algorithm statements in [DIM05] and [DI06] are ambiguous on the occasions
that m is equally close to two or more products c2a3b. Which (c, a, b) is chosen?
In our experiments, when several c2a3b are equally close to m, we choose the first
(c, b, a) in lexicographic order: we prioritize a small c, then a small b, then a small
a.)

The worst-case and average-case chain lengths produced by this double-base algo-
rithm are difficult to analyze mathematically. However, the average chain length for
all m’s can be estimated with high confidence as the average chain length seen for a
large number of m’s. Dimitrov, Imbert, and Mishra used 10000 integers m for each
of their data points; Doche and Imbert used 1000. The next section discusses the
experiments carried out for [BBLP07]; those experiments use 10000 uniform random
integers.

2.3 Optimizing double-base elliptic-curve single-

scalar multiplication

This section describes the experiments carried out in 2007 for [BBLP07] and the
achieved multiplication counts. The results of the experiments are presented as a
table and a series of graphs.
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2.3.1 Parameter space

Our experiments included several bit sizes ℓ, namely 160, 200, 256, 300, 400, and
500. The choices 200, 300, 400, 500 were used in [DI06] and we include them to ease
comparison. The choices 160 and 256 are common in cryptographic applications.
Our experiments included the eight curve shapes described in Section 2.1: 3DIK,
Edwards, ExtJQuartic, Hessian, InvEdwards, JacIntersect, Jacobian, and Jacobian-
3. For comparison with previous results, and to show the importance of optimized
curve formulas, we also carried out experiments for Std-Jac and Std-Jac-3.

Our experiments included many choices of the parameter a0 in [DI06, Algorithm
1]. The largest power of 2 allowed in the algorithm is 2a0 , i.e., a0 is an upper
bound for a1 in the chain representation. The largest power of 3 allowed in the
algorithm is 3b0 where b0 = ⌈(ℓ− a0)/ log2 3⌉; and b1 ≤ b0. Specifically, we tried each
a0 ∈ {0, 10, 20, . . . , 10⌊ℓ/10⌋}. This matches the experiments reported in [DI06] for
ℓ = 200. We also tried all integers a0 between 0.95ℓ and 1.00ℓ.
Our experiments included several sets S, i.e., sets of coefficients c allowed in c2a3b:
the set {1} used in [DIM05]; the sets {1, 2, 3}, {1, 2, 3, 4, 8, 9, 16, 27, 81}, {1, 5, 7},
{1, 5, 7, 11, 13, 17, 19, 23, 25} appearing in the graphs in [DI06, Appendix B] with
labels “(1, 1)” and “(4, 4)” and “S2” and “S8”; and {1, 2, 3, 4, 9}, {1, 2, 3, 4, 8, 9, 27},
{1, 5}, {1, 5, 7, 11}, {1, 5, 7, 11, 13}, {1, 5, 7, 11, 13, 17, 19} appearing in the tables
in [DI06, Appendix B]. We also included the sets {1, 2, 3, 5}, {1, 2, 3, 5, 7}, and so
on through {1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}; these sets are standard in the
base-2 context but do not seem to have been included in previous double-base ex-
periments. Additionally, we took the same sets as mentioned before, but excluded
2 as a window element; e.g., we chose {1, 3}, {1, 3, 5}, and so forth.
We used straightforward combinations of additions, doublings, and triplings for the
initial computation of cP for each c ∈ S.
We follow the standard (although debatable) practice of counting S = 0.8M and
disregarding other field operations. We caution the reader that other weightings of
field operations can easily change the order of two systems with similar levels of
performance.

2.3.2 Experiments and results

There are 8236 combinations of ℓ, a0, and S described above. For each combination,
we

• generated 10000 uniform random integers n ∈
{
0, 1, . . . , 2ℓ − 1

}
,

• converted each integer into a chain as specified by a0 and S,

• checked that the chain indeed computed n starting the chain from 1, and

• counted the number of triplings, doublings, additions, readditions, and mixed
additions for those 10000 choices of n.



2. Analyzing double-base elliptic-curve single-scalar multiplication 39

We converted the results into multiplication counts for the curve shapes 3DIK,
Edwards, ExtJQuartic, Hessian, InvEdwards, JacIntersect, Jacobian, Jacobian-3,
Std-Jac, and Std-Jac-3, obtaining a cost for each of the 82360 combinations of ℓ,
curve shape, a0, and S.
Figure 2.1 shows, for each ℓ (horizontal axis) and each curve shape, the minimum
cost per bit obtained when a0 and S are chosen optimally. The implementor can
easily read off the ranking of coordinate systems from this graph. Table 2.2 displays
the same information in tabular form, along with the choices of a0 and S.
There is no unique optimal choice of a0 and S for every curve shape which gives
rise to the fastest computation of a given ℓ-bit integer. For example, using Jacobian
coordinates the best result is achieved by precomputing odd coefficients up to 13
for an integer of bit length at most 300. For 400-bit integers the optimum uses
S = {1, 2, 3, 5, . . . , 17} and in the 500-bit case also 19 is included.
None of the optimal results for ℓ ≥ 200 uses a set of precomputed points discussed
in [DIM05] or [DI06]. The optimal coefficient sets in every case were those used in
(fractional) sliding-window methods, i.e. the sets {1, 2, 3, 5, . . .}.
Figure 2.2 shows, for each a0 (horizontal axis) and each curve shape, the cost for ℓ =
256 when S is chosen optimally. This graph demonstrates the importance of choosing
the right bounds for a0 and b0 depending on the ratio of the doubling/tripling costs.
We refer to Table 2.2 for the best choices of a0 and S for each curve shape.

Table 2.2: Optimal parameters for each curve shape and each ℓ

ℓ Curve shape Mults Mults/ℓ a0 a0/ℓ S

160 3DIK 1502.393800 9.389961 80 0.5 {1}
200 3DIK 1879.200960 9.396005 100 0.5 {1, 2, 3, 5, 7}
256 3DIK 2393.193800 9.348413 130 0.51 {1, 2, 3, 5, . . . , 13}
300 3DIK 2794.431020 9.314770 160 0.53 {1, 2, 3, 5, . . . , 13}
400 3DIK 3706.581360 9.266453 210 0.53 {1, 2, 3, 5, . . . , 13}
500 3DIK 4615.646620 9.231293 270 0.54 {1, 2, 3, 5, . . . , 17}
160 Edwards 1322.911120 8.268194 156 0.97 {1, 2, 3, 5, . . . , 13}
200 Edwards 1642.867360 8.214337 196 0.98 {1, 2, 3, 5, . . . , 15}
256 Edwards 2089.695120 8.162872 252 0.98 {1, 2, 3, 5, . . . , 15}
300 Edwards 2440.611880 8.135373 296 0.99 {1, 2, 3, 5, . . . , 15}
400 Edwards 3224.251900 8.060630 394 0.98 {1, 2, 3, 5, . . . , 25}
500 Edwards 4005.977080 8.011954 496 0.99 {1, 2, 3, 5, . . . , 25}
160 ExtJQuartic 1310.995340 8.193721 156 0.97 {1, 2, 3, 5, . . . , 13}
200 ExtJQuartic 1628.386660 8.141933 196 0.98 {1, 2, 3, 5, . . . , 15}
256 ExtJQuartic 2071.217580 8.090694 253 0.99 {1, 2, 3, 5, . . . , 15}
300 ExtJQuartic 2419.026660 8.063422 299 1 {1, 2, 3, 5, . . . , 21}
400 ExtJQuartic 3196.304940 7.990762 399 1 {1, 2, 3, 5, . . . , 25}
500 ExtJQuartic 3972.191800 7.944384 499 1 {1, 2, 3, 5, . . . , 25}

Continued on next page
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Table 2.2 – continued from previous page
ℓ Curve shape Mults Mults/ℓ a0 a0/ℓ S

160 Hessian 1560.487660 9.753048 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Hessian 1939.682780 9.698414 120 0.6 {1, 2, 3, 5, . . . , 13}
256 Hessian 2470.643200 9.650950 150 0.59 {1, 2, 3, 5, . . . , 13}
300 Hessian 2888.322160 9.627741 170 0.57 {1, 2, 3, 5, . . . , 13}
400 Hessian 3831.321760 9.578304 240 0.6 {1, 2, 3, 5, . . . , 17}
500 Hessian 4772.497740 9.544995 300 0.6 {1, 2, 3, 5, . . . , 19}
160 InvEdwards 1290.333920 8.064587 156 0.97 {1, 2, 3, 5, . . . , 13}
200 InvEdwards 1603.737760 8.018689 196 0.98 {1, 2, 3, 5, . . . , 15}
256 InvEdwards 2041.223320 7.973529 252 0.98 {1, 2, 3, 5, . . . , 15}
300 InvEdwards 2384.817880 7.949393 296 0.99 {1, 2, 3, 5, . . . , 15}
400 InvEdwards 3152.991660 7.882479 399 1 {1, 2, 3, 5, . . . , 25}
500 InvEdwards 3919.645880 7.839292 496 0.99 {1, 2, 3, 5, . . . , 25}
160 JacIntersect 1438.808960 8.992556 150 0.94 {1, 2, 3, 5, . . . , 13}
200 JacIntersect 1784.742200 8.923711 190 0.95 {1, 2, 3, 5, . . . , 15}
256 JacIntersect 2266.135540 8.852092 246 0.96 {1, 2, 3, 5, . . . , 15}
300 JacIntersect 2644.233000 8.814110 290 0.97 {1, 2, 3, 5, . . . , 15}
400 JacIntersect 3486.773860 8.716935 394 0.98 {1, 2, 3, 5, . . . , 25}
500 JacIntersect 4324.718620 8.649437 492 0.98 {1, 2, 3, 5, . . . , 25}
160 Jacobian 1558.405080 9.740032 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Jacobian 1937.129960 9.685650 130 0.65 {1, 2, 3, 5, . . . , 13}
256 Jacobian 2466.150480 9.633400 160 0.62 {1, 2, 3, 5, . . . , 13}
300 Jacobian 2882.657400 9.608858 180 0.6 {1, 2, 3, 5, . . . , 13}
400 Jacobian 3819.041260 9.547603 250 0.62 {1, 2, 3, 5, . . . , 17}
500 Jacobian 4755.197420 9.510395 310 0.62 {1, 2, 3, 5, . . . , 19}
160 Jacobian-3 1504.260200 9.401626 100 0.62 {1, 2, 3, 5, . . . , 13}
200 Jacobian-3 1868.530560 9.342653 130 0.65 {1, 2, 3, 5, . . . , 13}
256 Jacobian-3 2378.956000 9.292797 160 0.62 {1, 2, 3, 5, . . . , 13}
300 Jacobian-3 2779.917220 9.266391 200 0.67 {1, 2, 3, 5, . . . , 17}
400 Jacobian-3 3681.754460 9.204386 260 0.65 {1, 2, 3, 5, . . . , 17}
500 Jacobian-3 4583.527180 9.167054 330 0.66 {1, 2, 3, 5, . . . , 21}

The fastest systems are Edwards, ExtJQuartic, and InvEdwards. They need the
lowest number of multiplications for values of a0 very close to ℓ. These systems
are using larger sets of precomputations than slower systems such as Jacobian-3
or Jacobian, and fewer triplings. The faster systems all come with particularly
fast addition laws, making the precomputations less costly, and particularly fast
doublings, making triplings less attractive. This means that currently double-base
chains offer no or very little advantage for the fastest systems. See [BL07b] for a
detailed description of single-base scalar multiplication on Edwards curves.
Not every curve can be represented by one of these fast systems. For curves in
Jacobian coordinates values of a0 around 0.6ℓ seem optimal and produce significantly
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faster scalar multiplication than single-base representations.
Figure 2.3 shows, for a smaller range of a0 (horizontal axis) and each choice of S,
the cost for Jacobian-3 coordinates for ℓ = 200. This graph demonstrates several
interesting interactions between the doubling/tripling ratio, the choice of S, and
the final results. Figure 2.4 is a similar graph for Edwards curves. The optimal
scalar-multiplication method in that graph uses a0 ≈ 195 with coefficients in the set
±{1, 2, 3, 5, 7, 11, 13, 15}. The penalty for using standard single-base sliding-window
methods is negligible. On the other hand, triplings are clearly valuable if storage for
precomputed points is extremely limited.



42 2.3. Optimizing double-base elliptic-curve single-scalar multiplication

Figure 2.1: Multiplications per bit (all bits, all shapes). Horizontal axis is ℓ; the
vertical axis gives the minimum cost per bit obtained when a0 and S are chosen
optimally.

Figure 2.2: Importance of doubling/tripling ratio (256 bits, all shapes). Horizontal
axis is a0; the vertical axis gives the cost for ℓ = 256 when S is chosen optimally.
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Figure 2.3: Importance of parameter choices (200 bits, Jacobian-3). The horizontal
axis is a0; the vertical axis gives the cost for Jacobian-3 coordinates for ℓ = 200 and
each choice of S.

Figure 2.4: Importance of parameter choices (200 bits, Edwards). The horizontal
axis is a0; the vertical axis gives the cost for Edwards curves for ℓ = 200 and each
choice of S.
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Chapter 3

ECM using Edwards curves

Factorization of integers is one of the most studied problems in algorithmic number
theory and cryptology. One of the best general factorization methods available
is the Elliptic-Curve Method (ECM), introduced in the 1987 article [Len87b] by
Hendrik W. Lenstra, Jr. ECM plays an important role in factoring the “random”
integers of interest to number theorists: it is not as fast as trial division and Pollard’s
rho method for finding tiny prime factors, but it is the method of choice for finding
medium-size prime factors. ECM also plays an important role in factoring the“hard”
integers of interest to cryptologists: those integers are attacked by sieving methods,
which use ECM to find medium-size prime factors of auxiliary integers. ECM can
also be used directly to find “large” prime factors; the current record (see [Zima]) is
a 241-bit factor of the 1181-bit number 21181 − 1.
Implementations of ECM are available in most computer-algebra packages and have
been the subject of countless articles. The state-of-the-art implementation is GMP-
ECM [Z+10] which uses the GMP library [Gra] and which is described in detail in
the article by Zimmermann and Dodson [ZD06].
This chapter discusses how to use Edwards curves for the Elliptic-Curve Method
for factorization. The results presented here are based on the article “ECM us-
ing Edwards curves” [BBLP08] which is joint work with Bernstein, Birkner, and
Lange. Bernstein implemented ECM with Edwards curves using the techniques de-
scribed in [BBLP08] and also in parts in [BBL10]. The implementation uses the
MPFQ library [GT] and is called “EECM-MPFQ” [Ber10a]. This chapter presents
the mathematical background of EECM-MPFQ.
The main differences between the content of this chapter and [BBLP08] are the
following.

• The background on Edwards curves in [BBLP08] is omitted from this chapter
since it is treated in Chapter 1 of this thesis.

• This thesis omits parts of the discussion of EECM-MPFQ and omits the dis-
cussion of HECM which both can be found in [BBLP08, Section 4].

• This thesis omits the speedups for stage 2 of ECM for Edwards curves [BBLP08,
Section 5], the translation of the Montgomery construction to Edwards curves
[BBLP08, Section 7.7], and also the discussion of how to choose parameters
[BBLP08, Section 10].

45
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• This thesis contains an introduction to Pollard’s (p−1)-method and a stream-
lined description of stage 1 of ECM. The description of the strategies for ECM’s
stage 1 in Section 3.1 essentially follows [BBLP08, Section 4].

• Section 3.2 elaborates on Mazur’s theorem concerning the torsion groups of
elliptic curves over the rationals. Also this thesis discusses in more detail how
Kruppa’s “σ = 11”-case relates to Edwards curves.

3.1 The Elliptic-Curve Method (ECM)

In this section we first describe Pollard’s (p− 1)-method which predates ECM and
helps to understand ECM. The relation is that in ECM the multiplicative group is
replaced by the group of rational points on an elliptic curve.

3.1.1 Pollard’s (p− 1)-method

Definition 3.1 (Smoothness). A positive integer is called B-smooth if it is not
divisible by any prime which is larger than a given bound B ∈ Z. The integer B is
called smoothness bound.

Algorithm 3.1: Pollard’s (p− 1)-method (stage 1)

Input: An integer n > 1 and a bound B1.
Output: A nontrivial factor d of n, or “error.”

1: s← lcm {1, 2, . . . , B1}
2: Choose an integer 0 < a < n uniformly at random.
3: b← as (mod n)
4: d← gcd(b− 1, n)
5: If 1 < d < n then return d.
6: Else return “error.”

Pollard proposed two stages for his algorithm. Algorithm 3.1 describes “stage 1.”
Note that s is chosen as the least common multiple of integers up to B1. Remark 3.5
in the following section discusses alternative ways of choosing s.
Stage 1 of the algorithm hopes for n to have a prime divisor p such that as = 1 in
(Z/pZ)∗. The algorithm is most likely to find p if p − 1 is B1-smooth. Then, by
construction of s, it follows from Fermat’s theorem that as = 1 in (Z/pZ)∗. The
computation of the gcd of as − 1 and n then reveals either p or a multiple of p. In
the worst case the gcd equals n itself. This happens if n has many factors q with
q − 1 being B1-smooth.
The second stage hopes for n to have a prime divisor p such that as has small prime
order in (Z/pZ)∗; specifically, order ℓ for some prime ℓ between B1 and a second
(upper) bound B2. The state-of-the-art implementation of the (p − 1)-method is
described in Kruppa’s Ph.D. thesis [Kru10] and uses in particular speedups of stage 2
described in [MK08]. The (p − 1)-implementation is contained in the GMP-ECM
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package [Z+10]. Zimmermann [Zimb] maintains a website listing the 10 largest
factors found by the (p − 1)-method. The current record is a 219-bit factor of the
1179-bit number 960119 − 1.

3.1.2 Stage 1 of ECM

This section reviews the general idea of stage 1 of ECM and the state-of-the-art
strategies used in GMP-ECM to perform the elliptic-curve computations in stage 1.
Also a short outlook on stage 2 is given.

Algorithm 3.2: ECM stage 1

Input: An integer n > 1 and a bound B1.
Output: A nontrivial factor d of n.

1: Choose a B1-smooth integer s.
2: Choose an elliptic curve E defined over Q.
3: Choose a rational function φ : E → Q that has a pole at the neutral element

of E; for example choose φ as the Weierstrass x-coordinate.
4: Choose a point P ∈ E(Q).
5: Try to compute φ([s]P ) modulo n. Hope for an impossible division modulo n

which should reveal a factor d of n. Return d.
6: If no divisor can be revealed then go back to Step 2.

Remark 3.2. Step 5 is carried out by choosing a sequence of additions, subtractions,
multiplications, and divisions that, if carried out over Q, would compute φ([s]P ).
Since Z/nZ is a ring the algorithm only attempts to compute φ([s]P ) modulo n.
For a careful description of elliptic curves defined over rings we refer to Lenstra’s
article [Len87a].

Remark 3.3. An attempt to divide by a nonzero nonunit modulo n immediately
reveals a factor of n. An attempt to divide by 0 modulo n is not quite as informative
but usually allows a factor of n to be obtained without much extra work.

If n has a prime divisor q such that [s]P is the neutral element of E(Z/qZ) then the
stage-1 ECM computation will involve an impossible division modulo n. This occurs,
in particular, whenever s is a multiple of the group size #E(Z/qZ). As E varies
randomly, #E(Z/qZ) varies randomly (with some subtleties in its distribution; see,
e.g., [McK99]) in the Hasse interval [q − 2

√
q + 1, q + 2

√
q + 1]. What makes ECM

useful is that a surprisingly small s, allowing a surprisingly fast computation of [s]P ,
is a multiple of a surprisingly large percentage of the integers in the Hasse interval,
and is a multiple of the order of P modulo q with (conjecturally) an even larger
probability. See Section 3.5 for detailed statistics.

Example 3.4. For example, one could try to factor n as follows. Choose the curve
E : y2 = x3 − 2, the Weierstrass x-coordinate as φ, the point (x, y) = (3, 5), and
the integer s = 420. Choose the following strategy to compute the x-coordinate of
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[420](3, 5): use the standard affine-coordinate doubling formulas to compute [2](3, 5),
then [4](3, 5), then [8](3, 5); use the standard affine-coordinate addition formulas to
compute [12](3, 5); continue similarly through [2](3, 5), [4](3, 5), [8](3, 5), [12](3, 5),
[24](3, 5), [48](3, 5), [96](3, 5), [192](3, 5), [384](3, 5), [408](3, 5), [420](3, 5). Carry
out these computations modulo n, hoping for a division by a nonzero nonunit mod-
ulo n.
The denominator of the x-coordinate of [420](3, 5) in E(Q) has many small prime
factors: 2, 3, 5, 7, 11, 19, 29, 31, 41, 43, 59, 67, 71, 83, 89, 109, 163, 179, 181, 211,
223, 241, 269, 283, 383, 409, 419, 433, 523, 739, 769, 811, 839, etc. If n shares any of
these prime factors then the computation of [420](3, 5) will encounter an impossible
division modulo n. To verify the presence of (e.g.) the primes 769, 811, and 839 one
can observe that [420](3, 5) is the neutral element in each of the groups E(Z/769Z),
E(Z/811Z), E(Z/839Z); the order of (3, 5) turns out to be 7, 42, 35 respectively.
Note that the group orders are 819, 756, and 840, none of which divide 420.

Remark 3.5 (The standard choice of s). Pollard in [Pol74, page 527] suggested
choosing s as“the product of all the primes pi ≤ L each to some power ci ≥ 1. There
is some freedom in the choice of the ci but the smallest primes should certainly occur
to some power higher than the first.”
Pollard’s prime bound “L” is now called B1. One possibility is to choose, for each
prime π ≤ B1, the largest power of π in the interval [1, n+ 2

√
n + 1]. Then [s]P is

the neutral element in E(Z/qZ) if and only if the order of P is “B1-smooth”. This
possibility is theoretically pleasing but clearly suboptimal.
Brent in [Bre86, Section 5] said that “in practice we choose” the largest power of π
in the interval [1, B1] “because this significantly reduces the cost of a trial without
significantly reducing the probability of success.” GMP-ECM uses the same strategy;
see [ZD06, page 529].

Remark 3.6 (The standard prime-by-prime strategy). Pollard in [Pol74, page 527]
said that one “can choose between using the primes pi in succession or computing
P in advance and performing a single power operation.” Pollard’s “P” is s in the
notation of this thesis.
As far as we know, all ECM implementations use the first strategy, working with
one prime at a time. Brent in [Bre86, Section 5] wrote “Actually, E [i.e., s in
our notation] is not computed. Instead . . . repeated operations of the form P :=
P k [i.e., [k]P in our notation], where k . . . is a prime power.” Montgomery in
[Mon87, page 249] wrote “It is unnecessary to compute R [i.e., s in our notation]
explicitly.” Zimmermann and Dodson in [ZD06, page 529] wrote “That big product
is not computed as such”and presented the prime-by-prime loop used in GMP-ECM.

Remark 3.7 (The standard elliptic-curve coordinate system). Chudnovsky and
Chudnovsky in [CC86, Section 4] wrote “The crucial problem becomes the choice of
the model of an algebraic group variety, where computations mod p are the least time
consuming.” They presented explicit formulas for computations on several different
shapes of elliptic curves.
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Section 1.2.6 introduced Montgomery curves, i.e., elliptic curves of the form By2 =
x3+Ax2+x which Montgomery introduced particularly for speeding up ECM imple-
mentations. Montgomery suggested what are now called“Montgomery coordinates”:
a point (x1, y1) on By

2 = x3 + Ax2 + x is represented as a pair (X1 : Z1) such that
X1/Z1 = x1. This representation does not distinguish (x1, y1) from (x1,−y1), so it
does not allow addition, but it does allow “differential addition,” i.e., computation
of P + Q given P , Q, and P − Q. In particular, Montgomery presented explicit
formulas to compute P, [2k]P, [(2k+1)]P from P, [k]P, [k+1]P using 6M+4S+1D,
or 5M+4S+1D if P is given with Z1 = 1, or 4M+4S+1D if P is a very small point
such as (X1 : Z1) = (3, 5). One can find earlier formulas for the same computation
in [CC86, formula (4.19)], but Montgomery’s formulas are faster.
As far as we know, all subsequent ECM implementations have used Montgomery
coordinates. In particular, GMP-ECM uses Montgomery coordinates for stage 1,
with “PRAC,” a particular differential addition chain introduced by Montgomery
in [Mon83].

Remark 3.8 (Note on stage 2). There is an analogue for ECM of the second stage
in Pollard’s (p − 1)-algorithm. Stage 2 hopes for n to have a prime divisor q such
that [s]P has small prime order in E(Z/qZ): specifically, order ℓ for some prime
ℓ between B1 and B2. Here B1 is the stage-1 parameter and B2 is a new stage-2
parameter. The most obvious way to check for a small order of [s]P is a prime-by-
prime approach, computing [ℓs]P modulo n for each prime ℓ.
If ℓ′ is the next prime after ℓ then one can move from [ℓs]P to [ℓ′s]P by adding a pre-
computed point [(ℓ′−ℓ)s]P . Computing all [ℓs]P in this way takes aboutB2/ logB2−
B1/ logB1 elliptic-curve additions modulo n: there are about B2/ logB2−B1/ logB1

primes ℓ, and the time for precomputation is quite small, since the differences ℓ′− ℓ
are generally quite small.
Section 5 in [BBLP08] discusses standard speedups such as the baby-step-giant-step
approach, fast polynomial arithmetic, higher-degree baby steps and giant steps and
it also discusses how the use of Edwards curves in extended coordinates speeds up
the computations of stage 2.

3.1.3 Speedups in EECM-MPFQ

EECM-MPFQ breaks with stage-1 tradition as described in the previous section in
three ways:

• EECM-MPFQ uses twisted Edwards curves ax2+y2 = 1+dx2y2 with extended
Edwards coordinates with φ = 1/x whereas GMP-ECM uses Montgomery
curves with Montgomery coordinates. See below for performance results.

• EECM-MPFQ handles the prime factors π of s in a batch, whereas GMP-
ECM handles each prime factor separately. EECM-MPFQ always uses a sin-
gle batch: it computes the entire product s and then replaces P with [s]P .
The large batches save time, as discussed below; the computation of s takes
negligible time.
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• EECM-MPFQ uses “signed sliding fractional window” addition-subtraction
chains which were defined in Section 2.2.3; see also [Doc05] and [BL08]. These
chains compute P 7→ [s]P using only 1 doubling and ǫ additions for each bit
of s. Here ǫ converges to 0 as s increases in length; this is why larger batches
save time. The savings are amplified by the fact that an addition is somewhat
more expensive than a doubling. Note that these chains are not compatible
with Montgomery coordinates; they are shorter than any differential addition
chain can be.

EECM-MPFQ follows tradition in its choice of s. Our experiments have not found
significant speedups from other choices of s: for example, allowing prime powers in
the larger interval [1, B1.5

1 ] has negligible extra cost when B1 is large, but it also
appears to have negligible benefit.
The addition-subtraction chains used in EECM-MPFQ are the chains Cm(s) defined
in [BL08, Section 3]:
Given B1, EECM-MPFQ computes s, computes Cm(s) for various choices of the
chain parameter m, and keeps the lowest-cost chain that it finds in a simple measure
of cost. (Variations in the cost measure do not lead to noticeably better chains.)
The total time spent on this computation is small: for example, under a second for
B1 = 1048576. The resulting chain is reused for many curves and many inputs n.
For a description of how CPU cycles are measured for GMP-ECM and EECM-MPFQ
we refer to Section 4 in [BBLP08].
This thesis restricts to discussing improvements of stage 1 of ECM. Note that EECM-
MPFQ contains both stage 1 and stage 2.

3.2 Edwards curves with large torsion

This section explains which curves are used in EECM-MPFQ. Curves having 12
or 16 torsion points over Q are guaranteed to have 12 or 16 as divisors of their
group orders modulo primes (of good reduction), improving the smoothness chance
of the group orders and thus improving the success chance of ECM. We show how
to use analogous improvements for Edwards curves. Note that [BBLP08, Section 9]
discusses the impact of large torsion in the case of EECM in detail.
The proofs given in this section make use of the characterization of points of small
order on (twisted) Edwards curves in Section 1.2.5.

3.2.1 Elliptic curves over the rationals

The rational points of finite order on an elliptic curve E over a field k form a
subgroup of E(k) which is called the torsion group and denoted by Etor(k). Mordell
proved that the rational points E(Q) form a finitely generated group; specifically
that E(Q) ∼= Etor(Q) × Zr. Here r is a nonnegative integer called the rank of E.
The proof of Mordell’s theorem goes beyond the scope of this thesis; see Chapter
VIII in [Sil86] for a proof of the more general Mordell–Weil theorem.
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The Elliptic-Curve Method starts by selecting an elliptic curve E over the rationals.
One hopes that reducing E modulo a possible divisor q of n results in #E(Z/qZ)
being smooth. A common way to influence the smoothness is to construct curves
with prescribed torsion and positive rank having powers of 2 and 3 dividing the
group size #E(Q).
Mazur characterized the torsion group of elliptic curves over the rationals. This
thesis states Mazur’s theorem as in [Sil86] where the proof is omitted due to its
complexity. The theorem in more generality and including proofs can be found
in [Maz77] and [Maz78].

Theorem 3.9. The torsion group Etor(Q) of any elliptic curve E is isomorphic to
one of 15 finite groups, specifically

Etor(Q) ∼=
{

Z/mZ, m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}, or
Z/2Z× Z/2mZ, m ∈ {1, 2, 3, 4}.

Since any elliptic curve in Edwards form has a point of order 4 it follows that the
torsion group of an Edwards curve is isomorphic to either Z/4Z, Z/8Z, Z/12Z,
Z/2Z× Z/4Z, or Z/2Z× Z/8Z.
The most interesting cases for ECM are Z/12Z and Z/2Z× Z/8Z, since they force
the group orders of E modulo primes p (of good reduction) to be divisible by 12
and 16 respectively. This section shows which conditions an Edwards curve x2 +
y2 = 1 + dx2y2 over Q must satisfy to have torsion group isomorphic to Z/12Z or
Z/2Z× Z/8Z. We give parametrizations for both cases.
Computations in extended Edwards coordinates would benefit from using twisted
Edwards curves with a = −1. We show that such curves cannot have Q-torsion
group isomorphic to Z/12Z or Z/2Z× Z/8Z.
We first present the constructions and then show the impossibility results.

3.2.2 Torsion group Z/12Z

Theorem 3.10 states a genus-0 cover of the set of Edwards curves over Q with torsion
group Z/12Z. Theorem 3.11 identifies all the points of finite order on such curves.
Theorem 3.12 states a rational cover.

Theorem 3.10. If y3 ∈ Q \ {−2,−1/2, 0,±1} and x3 ∈ Q satisfy x23 = −(y23 + 2y3)
then the Edwards curve x2 + y2 = 1 + dx2y2 over Q, where d = −(2y3 + 1)/(x23y

2
3),

has (x3, y3) as a point of order 3 and has Q-torsion group isomorphic to Z/12Z.
Conversely, every Edwards curve over Q with a point of order 3 arises in this way.

Proof. Assume that such a y3 and x3 exist. Then d is defined and not equal to 0 or
1, and x23 + y23 = −2y3 = 1 + dx23y

2
3. By Theorem 1.32, (x3, y3) is a point of order

3 on E E,1,d(Q). Since each Edwards curve has a point of order 4 the torsion group
must contain a copy of Z/12Z. By Mazur’s theorem the torsion group cannot be
larger.
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Conversely, if E E,1,d(Q) has a point of order 3, then by Theorem 1.32 the point can
be written as (x3, y3) where x

2
3 + y23 = 1 + dx23y

2
3 = −2y3. Hence x23 = −(y23 + 2y3).

Note that x3 6= 0, since otherwise y23 = 1 = −2y3; and note that y3 /∈ {0,−2} since
otherwise x3 = 0. Now d = −(2y3 + 1)/(x23y

2
3). Finally note that y3 /∈ {−1/2,±1}

since otherwise d ∈ {0, 1}, contradicting the definition of an Edwards curve.

Theorem 3.11. Let x2+y2 = 1+dx2y2 be an Edwards curve over Q with Etor(Q) ∼=
Z/12Z and let P3 = (x3, y3) be a point of order 3 on the curve.
The 12 torsion points on the curve and their respective orders are as follows:

point (0, 1) (0,−1) (±x3, y3) (±1, 0) (±x3,−y3) (±y3,±x3)
order 1 2 3 4 6 12

Proof. The points of order 6 are obtained as (±x3, y3) + (0,−1), the points of order
12 by adding (±1, 0) to the points of order 3.

Theorem 3.12. If u ∈ Q \ {0,±1} then the Edwards curve x2 + y2 = 1 + dx2y2

over Q, where

x3 =
u2 − 1

u2 + 1
, y3 = −

(u− 1)2

u2 + 1
, d =

(u2 + 1)3(u2 − 4u+ 1)

(u− 1)6(u+ 1)2

has (x3, y3) as a point of order 3 and has Q-torsion group isomorphic to Z/12Z.
Conversely, every Edwards curve over Q with a point of order 3 arises in this way.
The parameters u and 1/u give the same value of d.

Proof. Multiply the identity (u+1)2 + (u− 1)2 = 2(u2 +1) by (u− 1)2/(u2+1)2 to
see that x23 + y23 = −2y3, and observe that

d =
2(u− 1)2 − (u2 + 1)

u2 + 1
· (u

2 + 1)2

(u2 − 1)2
· (u

2 + 1)2

(u− 1)4
=
−2y3 − 1

x23y
2
3

.

Furthermore y3 /∈ {−2,−1/2, 0,±1} since u ∈ Q \ {0,±1}. By Theorem 3.10, the
Edwards curve x2 + y2 = 1+ dx2y2 over Q has (x3, y3) as a point of order 3 and has
torsion group isomorphic to Z/12Z.
Conversely, assume that the Edwards curve x2+ y2 = 1+ dx2y2 has a point of order
3. By Theorem 3.10, the curve has a point (x3, y3) of order 3 for some y3 ∈ Q \
{−2,−1/2, 0,±1} and x3 ∈ Q satisfying x23 = −(y23+2y3) and d = −(2y3+1)/(x23y

2
3).

Note that (x3, y3 + 1) is a point on the unit circle.
If x3 = ±1 then y3 + 1 = 0 so d = −(2y3 + 1)/(x23y

2
3) = 1; but Edwards curves have

d 6= 1. Hence x3 6= ±1. Furthermore x3 6= 0 since every point with x-coordinate 0
has order 1 or 2.
Define u as the slope of the line between (1, 0) and (x3,−(y3 + 1)); i.e., u = (y3 +
1)/(1−x3). Substitute y3+1 = u(1−x3) into (y3+1)2 = 1−x23 to obtain u2(1−x3)2 =
1−x23 = (1+x3)(1−x3), i.e., u2(1−x3) = 1+x3, i.e., x3 = (u2− 1)/(u2+1). Then
u /∈ {0,±1} since x3 /∈ {0,−1}. Furthermore y3 = u(1−x3)−1 = u(2/(u2+1))−1 =
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−(u−1)2/(u2+1) and as above d = (2y3+1)/(x23y
2
3) = (u2+1)3(u2−4u+1)/((u−

1)6(u+ 1)2).
The value of d is invariant under the change u 7→ 1/u since

(1 + u2)3(1− 4u+ u2)

(1− u)6(1 + u)2
=

(u2 + 1)3(u2 − 4u+ 1)

(u− 1)6(u+ 1)2
.

Solving the equation d(u′) = d(u) for u′ in terms of u over the rationals shows
that u 7→ 1/u is the only rational transformation leaving d invariant that works
independently of u.

3.2.3 Torsion group Z/2Z× Z/8Z

Theorem 3.13 states a genus-0 cover of the set of Edwards curves over Q with torsion
group Z/2Z× Z/8Z. Theorem 3.14 identifies all the affine points of finite order on
such curves. Theorem 3.15 states a rational cover and identifies the degree of the
cover.
There are actually two types of curves in Theorem 3.13: points of order 8 double
to (±1 : 0) on curves of the first type, or to ((1 : ±

√
d), (1 : 0)) on curves of the

second type. Curves of the second type are birationally equivalent to curves of the
first type by Remark 1.17. Subsequent theorems consider only the first type.

Theorem 3.13. If x8 ∈ Q \ {0,±1} and d = (2x28− 1)/x48 is a square in Q then the
Edwards curve x2+y2 = 1+dx2y2 over Q has (x8,±x8) as points of order 8 doubling
to (±1, 0), and has Q-torsion group isomorphic to Z/2Z×Z/8Z. Conversely, every
Edwards curve over Q with Q-torsion group isomorphic to Z/2Z×Z/8Z and a point
of order 8 doubling to (±1, 0) arises in this way.
If x̄8 ∈ Q \ {0,±1} and d = 1/(x̄28(2− x̄28)) is a square in Q then the Edwards curve
x2+y2 = 1+dx2y2 over Q has (x̄8,±1/(x̄8

√
d)) as points of order 8 doubling to ((1 :

±
√
d), (1 : 0)), and has Q-torsion group isomorphic to Z/2Z × Z/8Z. Conversely,

every Edwards curve over Q with Q-torsion group isomorphic to Z/2Z× Z/8Z and
a point of order 8 doubling to ((1 : ±

√
d), (1 : 0)) arises in this way.

Every Edwards curve over Q with Q-torsion group isomorphic to Z/2Z×Z/8Z arises
in one of these two ways.

Proof. Any such x8 yields d 6= 0, 1, so x2 + y2 = 1 + dx2y2 is an Edwards curve.
By Theorems 1.30 and 1.31, the curve has points (0,−1) and ((1 : 0), (1 : ±

√
d)) of

order 2, and points (x8,±x8) of order 8 doubling to (±1, 0). Similarly, any such x̄8
yields an Edwards curve with points (0,−1) and ((1 : 0), (1 : ±

√
d)) of order 2 and

(x̄8,±1/(x̄8
√
d)) of order 8 doubling to ((1 : ±

√
d), (1 : 0)).

In both cases the torsion group contains a copy of Z/2Z×Z/8Z. By Mazur’s theorem
the torsion group cannot be larger.
Conversely, assume that x2+y2 = 1+dx2y2 is an Edwards curve withQ-torsion group
isomorphic to Z/2Z × Z/8Z. There are four elements of order 4 in Z/2Z × Z/8Z,
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all doubling to the same element, so there are four order-4 points on the curve, all
doubling to the same point.
The points (±1, 0) have order 4 and double to (0,−1), so the other two points of
order 4 also double to (0,−1). By Theorem 1.30, those other two points must be
((1 : ±

√
d), (1 : 0)), and d must be a square.

Now any point of order 8 must double to (±1, 0) or to ((1 : ±
√
d), (1 : 0)). In the

first case, by Theorem 1.31, the point is (x8,±x8) for some root x8 of dx
4
8− 2x28 +1;

hence x8 /∈ {0,±1} and d = (2x28− 1)/x48. In the second case, by Theorem 1.31, the
point is (x̄8,±1/(x̄8

√
d)) for some root x̄8 of dx̄

4
8− 2dx̄28+1; hence x̄8 /∈ {0,±1} and

d = 1/(x̄48 − 2x̄28).

Recall Remark 1.17, namely that if d is a square, then the Edwards curves x2+y2 =
1 + dx2y2 and x̄2 + ȳ2 = 1 + (1/d)x̄2ȳ2 are birationally equivalent via the map x̄ =
x
√
d, ȳ = 1/y with inverse x = x̄/

√
d, y = 1/ȳ. The map fixes (0,±1). In particular,

each curve of the second type in Theorem 3.13 is birationally equivalent to a curve
of the first type. Indeed, assume that x̄8 ∈ Q \ {0,±1} and that d = 1/(x̄28(2− x̄28))
is a square in Q. Define x8 = x̄8

√
d. Then x28 = 1/(2 − x̄28), so (2x28 − 1)/x48 =

(2/(2 − x̄28) − 1)(2 − x̄28)
2 = x̄28(2 − x̄28) = 1/d, which is a square; furthermore,

x8 /∈ {0,±1} since 2− x̄28 6= 1 since x̄8 /∈ {±1}. Hence x2 + y2 = 1 + (1/d)x2y2 is a
curve of the first type. The curve x2 + y2 = 1 + dx2y2 is birationally equivalent to
x̄2+ ȳ2 = 1+(1/d)x̄2ȳ2 by Remark 1.17. Consequently, we can restrict our attention
to curves of the first type, i.e., curves on which the points of order 8 double to (±1, 0).

Theorem 3.14. Assume that x8 ∈ Q\{0,±1} and that d = (2x28−1)/x48 is a square
in Q. Then there are 16 points of finite order on E E,1,d over Q. The affine points
of finite order are as follows:

point (0, 1) (0,−1) (±1, 0) (±x8,±x8)
(

±1/(x8
√
d),±1/(x8

√
d)
)

order 1 2 4 8 8

where the signs are taken independently.

Proof. Theorem 1.30 (with a = 1) shows that the 4 affine points (0, 1), (0,−1),
and (±1, 0) are on E E,1,d and have the stated orders. It also shows that the 2

non-affine points ((1 : 0), (1 : ±
√
d)) have order 2 and that the 2 non-affine points

((1 : ±
√
d), (1 : 0)) have order 4. Theorem 1.31 shows that the other affine points

listed are 8 distinct points on E E,1,d and have order 8. The torsion group has exactly
16 elements by Theorem 3.13.

Theorem 3.15. If u ∈ Q \ {0,−1,−2} then the Edwards curve x2 + y2 = 1+ dx2y2

over Q, where

x8 =
u2 + 2u+ 2

u2 − 2
, d =

2x28 − 1

x48
,

has (x8, x8) as a point of order 8 and has Q-torsion group isomorphic to Z/2Z ×
Z/8Z.
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Conversely, every Edwards curve over Q with torsion group isomorphic to Z/2Z ×
Z/8Z on which the points of order 8 double to (±1, 0) is expressible in this way.

The parameters u, 2/u, −2(u+1)/(u+2), −(2+ u)/(1+ u), −(u+2), −2/(u+2),
−u/(u+ 1), and −2(u+ 1)/u give the same value of d and they are the only values
giving this d.

Proof. Divide the identity 2(u2+2u+2)2− (u2−2)2 = (u2+4u+2)2 by (u2−2)2 to
see that 2x28−1 = (u2+4u+2)2/(u2−2)2. Hence d is a square. Furthermore x8 6= 0
since u2 + 2u + 2 6= 0; x8 6= 1 since u 6= −2; and x8 6= −1 since u /∈ {0,−1}. By
Theorem 3.13, the curve E E,1,d has (x8, x8) as a point of order 8, and has Q-torsion
group isomorphic to Z/2Z× Z/8Z.

Conversely, assume that an Edwards curve has torsion group isomorphic to Z/2Z×
Z/8Z and has a point of order 8 doubling to (±1, 0). By Theorem 3.13, the curve
can be expressed as E E,1,d for some x8 ∈ Q \ {0,±1} such that d = (2x28 − 1)/x48 is
a square in Q; i.e., such that 2x28 − 1 is a square in Q.

Choose r ∈ Q such that 2x28 − 1 = r2. Define u as the slope of the line between
(1,−1) and (x8, r): i.e., u = (r + 1)/(x8 − 1). Substitute r = u(x8 − 1) − 1 into
2(x28−1) = (r+1)(r−1) to obtain 2(x28−1) = u(x8−1)(u(x8−1)−2), i.e., 2(x8+1) =
u(u(x8 − 1) − 2), i.e., 2x8 + 2 = u2x8 − u2 − 2u, i.e., x8 = (u2 + 2u + 2)/(u2 − 2).
Finally u /∈ {0,−1} since x8 6= −1, and u 6= −2 since x8 6= 1.

The identity

(d(u)− d(v))((u+ 1)2 + 1)4((v + 1)2 + 1)4

= 16(u− v)(uv − 2)((u+ 2)v + 2(u+ 1))(u+ 2 + (u+ 1)v)

· (u+ v + 2)((u+ 2)v + 2)(u+ (u+ 1)v)(uv + 2(u+ 1))

immediately shows that if v is any of the values u, 2/u, . . . listed in the theorem then
d(v) = d(u). Conversely, if v is not one of those values then none of the factors
u− v, uv − 2, . . . are 0 so d(v) 6= d(u).

3.2.4 Impossibility results

The following theorem shows that the only way for a twisted Edwards curve to
have exactly 12 torsion points is to have torsion group isomorphic to Z/12Z. The
next two theorems consider twisted Edwards curves with a = −1 and show that
these cannot have Q-torsion group isomorphic to Z/12Z or Z/2Z× Z/8Z. The last
theorem shows that a twisted Edwards curve cannot have exactly 10 torsion points.

Theorem 3.16. There exists no twisted Edwards curve over Q with torsion group
isomorphic to Z/2Z× Z/6Z.

Proof. Let a, d be distinct nonzero elements of Q. Suppose that the twisted Edwards
curve E E,a,d : ax

2+y2 = 1+dx2y2 has Q-torsion group isomorphic to Z/2Z×Z/6Z.
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There are three elements of order 2 in Z/2Z × Z/6Z, so there are three points of
order 2 in E E,a,d(Q). By Theorem 1.30 the only possible points of order 2 are (0,−1)
and ((1 : 0), (±

√

a/d : 1)). Hence
√

a/d ∈ Q.
There are also elements of order 3 in Z/2Z × Z/6Z. Choose a point of order 3 in
E E,a,d(Q). By Theorem 1.32 this point can be expressed as (x3, y3) where ax

2
3+y

2
3 =

1 + dx23y
2
3 = −2y3.

Write u = 1+y3. Then 1−u2 = −2y3−y23 = ax23. Starting from dx23y
2
3 = ax23+y

2
3−1,

replace x23 by (1 − u2)/a and replace y3 by u − 1 to see that (d/a)(1 − u2)(u −
1)2 = (1 − u2) + (u − 1)2 − 1 = 1 − 2u. Hence s2 = 4(1 − 2u)(1 − u2) where
s = 2(1− u2)(u− 1)

√

d/a ∈ Q.
In other words, (2u, s) is a Q-rational point (σ, τ) on the elliptic curve τ 2 = σ3 −
σ2 − 4σ + 4. This elliptic curve has rank 0 over Q, and has exactly 7 affine points
over Q, as one can verify by typing

E=EllipticCurve(QQ,[0,-1,0,-4,4])

print E.rank()

print E.torsion_points()

into the Sage computer-algebra system [S+10]. Specifically, (σ, τ) must be one of
(±2, 0), (0,±2), (1, 0), (4,±6). Hence u ∈ {±1, 0, 1/2, 2}. In each case (a : d) =
((1 − u2)(u − 1)2 : 1 − 2u) ∈ {(1 : 1), (0 : 1), (1 : 0)}, contradicting the assumption
that a, d are distinct nonzero elements of Q.

Theorem 3.17. There exists no twisted Edwards curve of the form ax2 + y2 =
1 + dx2y2 over Q with a = −1 and torsion group isomorphic to Z/12Z.

Proof. Suppose that the twisted Edwards curve E E,−1,d : −x2 + y2 = 1 + dx2y2 has
Q-torsion group isomorphic to Z/12Z.
There is a unique element of order 2 in Z/12Z, so (0,−1) is the only point of order
2 on E E,−1,d(Q). Furthermore, there are elements of order 4 in Z/12Z, so there are
points on E E,−1,d(Q) doubling to (0,−1). By Theorem 1.30 the only possibilities for

such points are ((1 : ±√a), (0 : 1)) or ((1 : ±
√
d), (1 : 0)). Hence a or d is a square

in Q; but a = −1 is not a square in Q, so d is a square in Q.
There are also elements of order 3 in Z/12Z. As in the proof of Theorem 3.16
there exists u ∈ Q such that (d/a)(1 − u2)(u − 1)2 = 1 − 2u. Here a = −1 so
s2 = −4(1− u2)(1− 2u) where s = 2(1− u2)(u− 1)

√
d ∈ Q.

In other words, (−2u, s) is a Q-rational point on the elliptic curve τ 2 = σ3 + σ2 −
4σ − 4. This elliptic curve has rank 0 over Q, and has exactly 3 affine points over
Q: specifically, (σ, τ) must be one of (±2, 0), (−1, 0). Hence u ∈ {±1, 1/2}. If
u ∈ {±1} then 0 = (d/a)(1 − u2)(u − 1)2 = 1 − 2u 6= 0, contradiction; if u = 1/2
then 0 = 1− 2u = (d/a)(1− u2)(u− 1)2 6= 0, contradiction.

Theorem 3.18. There exists no twisted Edwards curve of the form ax2 + y2 =
1 + dx2y2 over Q with a = −1 and torsion group isomorphic to Z/2Z× Z/8Z.

Proof. Suppose that the twisted Edwards curve E E,−1,d : −x2 + y2 = 1 + dx2y2 has
Q-torsion group isomorphic to Z/2Z× Z/8Z.
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The torsion group contains exactly three elements of order 2, so
√

a/d ∈ Q as in
the proof of Theorem 3.16; i.e.,

√
−d ∈ Q. Consequently d is not a square in Q.

The torsion group also contains exactly 4 elements of order 4. These elements
cannot double to (0,−1): otherwise they would have the form ((1 : ±

√
−1), (0 : 1))

or ((1 : ±
√
d), (1 : 0)) by Theorem 1.30, but neither −1 nor d is a square in Q. The

elements of order 4 therefore double to ((1 : 0), (±
√

−1/d : 1)).
If s2 = −1/d then the elements of order 4 doubling to ((1 : 0), (s : 1)) are
(±√s,±√s) by Theorem 1.30, where the ± signs are assumed independently. In
particular, if such elements are defined over Q, then ±√s ∈ Q, so s is a square in
Q, so −1/d is a fourth power in Q, say f 4. Now (±f,±f) are points of order 4
doubling to ((1 : 0), (f 2 : 1)), and there are no other points of order 4.
The torsion group contains a point P8 of order 8. This point doubles to (±f,±f).
Assume without loss of generality that [2]P8 = (±f, f): otherwise replace f by −f .
Further assume without loss of generality that [2]P8 = (f, f): otherwise replace P8

by −P8. Any point having a zero coordinate has order at most 4, so P8 must be an
affine point, say (x8, y8), with x8 6= 0 and y8 6= 0.
Now [2]P8 = (f, f) implies (2x8y8)/(−x28 + y28) = f = (y28 + x28)/(2 + x28 − y28),
with −x28 + y28 6= 0 and 2 + x28 − y28 6= 0. In particular, (y28 + x28)(−x28 + y28) =
(2x8y8)(2 + x28− y28), so (y28 − x28)(x28 + y28 + 2x8y8) = 4x8y8; i.e., (y

2
8 − x28)r2 = 4x8y8

where r = x8 + y8.
Define s = 2(y28 + x28)/(y

2
8 − x28). Then

s2 − 4 =
4((y28 + x28)

2 − (y28 − x28)2)
(y28 − x28)2

=
16y28x

2
8

(y28 − x28)2
= r4

so (s + r2)2 − 4 = 2r2(s + r2); consequently ((s + r2)/2, r(s + r2)/2) is a rational
point on the elliptic curve τ 2 = σ3 − σ. This curve has rank 0 over Q and exactly 3
affine points over Q, namely (±1, 0) and (0, 0). Hence r(s + r2) = 0; consequently
0 = r(s + r2)(s − r2) = r(s2 − r4) = 4r, so r = 0, so x8 + y8 = 0, contradicting
−x28 + y28 6= 0.

Theorem 3.19. There exists no twisted Edwards curve over Q with torsion group
isomorphic to Z/10Z.

Proof. Suppose that the twisted Edwards curve E E,a,d : ax2 + y2 = 1 + dx2y2 has
Q-torsion group isomorphic to Z/10Z. This means in particular that there exists
a point P5 ∈ E E,a,d(Q) of order 5. Points at infinity have order at most 4 by
Theorem 1.30, so P5 = (x5, y5) for some x5, y5 ∈ Q. Points with a zero coordinate
also have order at most 4 by Theorem 1.30, so x5 6= 0 and y5 6= 0. Note also that
y5 /∈ {−1, 1} since x5 6= 0.
Apply the doubling formulas twice to see that the x-coordinate of [4]P5 satisfies

x([4]P5)− (−x5) =
x5 (ax

2
5 + y25 − 2y5)F

a4x85 + 4y25a
3x65 + (6y45 − 16y25)a

2x45 + (4y65 − 16y45 + 16y25)ax
2
5 + y85

,
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where F = a3x65+(3y25 +6y5)a
2x45+(3y45 +4y35−4y25−8y5)ax

2
5+ y

6
5−2y55−4y45. The

equation [4]P5 = −P5 implies x([4]P5)− (−x5) = 0, so x5(ax
2
5 + y25 − 2y5)F = 0.

Case 1: ax25+ y
2
5 = 2y5. Then (x5,−y5) is a curve point of order 3 by Theorem 1.32,

contradicting the hypothesis that the torsion group is isomorphic to Z/10Z.

Case 2: F = 0. Define q = (ax25 + y25 + 2y5)/y5 and r = q/(y5 + 1). The identity
rq2 − (r2 + 8)q + 16 = F/(y25(y5 + 1)2) then implies rq2 − (r2 + 8)q + 16 = 0.

Define U = q − r, V = q − r − 4, and W = 4 − q − r. Then (U, V,W ) 6= (0, 0, 0),
and V 2W − U3 − U2W + UW 2 = 4(rq2 − (r2 + 8)q + 16) = 0, so (U : V : W ) is a
rational point on the elliptic curve τ 2 = σ3 + σ2 − σ. This curve has rank 0 over Q
and exactly 6 points over Q, namely (±1,±1), (0, 0), and (0 : 1 : 0), so (U : V : W )
is one of those points.

The points (1, 1) and (−1,−1) and (0, 0) are excluded since U 6= V . The point
(1,−1) implies (q, r) = (2, 0), contradicting r = q/(y5 + 1). The point (−1, 1)
implies (q, r) = (4, 2), again contradicting r = q/(y5 + 1) since y5 6= 1. Finally,
the point (0 : 1 : 0) implies (q, r) = (2, 2), again contradicting r = q/(y5 + 1) since
y5 6= 0.

3.3 Edwards curves with large torsion and posi-

tive rank

Atkin and Morain in [AM93] found an infinite family of elliptic curves over Q with
torsion group Z/2Z × Z/8Z and with explicit non-torsion points. Montgomery in
[Mon87, page 263] had earlier found an analogous family for Z/12Z. Suyama in
[Suy85] had earlier given an infinite sequence of Montgomery curves with explicit
non-torsion points and with group order divisible by 12 over any prime field. GMP-
ECM uses Suyama curves; see [ZD06]. See [Mon92, Section 6] for further Z/2Z ×
Z/8Z constructions.

In this section we translate the Atkin–Morain and Montgomery constructions from
Weierstrass curves to Edwards curves. We also translate the Suyama construction to
twisted Edwards curves. This section relies on the equivalence between Montgomery
curves and twisted Edwards curves which we discussed in Section 1.2.6.

3.3.1 The Atkin–Morain construction

The Atkin–Morain family is parametrized by points (s, t) on a particular elliptic
curve T 2 = S3 − 8S − 32. Atkin and Morain suggest computing multiples (s, t) of
(12, 40), a non-torsion point on this curve. Beware that these points have rapidly
increasing height. Here the height of a rational number p/q is max{|p|, |q|} for
coprime p and q; the height of a point on an elliptic curve represented in affine
coordinates is defined as the maximum of the natural logarithm of the height of the
x and y-coordinate of that point (see also [Sil86, page 202]).
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Theorem 3.20 (Atkin, Morain). Let (s, t) be a rational point on the curve T 2 =
S3 − 8S − 32. Define α = ((t+ 25)/(s− 9) + 1)−1, β = 2α(4α + 1)/(8α2 − 1),
c = (2β − 1)(β − 1)/β, and b = βc. Then the elliptic curve

Eα : V 2 = U3 +
((c− 1)2 − 4b)

4
U2 +

b(c− 1)

2
U +

b2

4

has torsion group isomorphic to Z/2Z×Z/8Z and a point with U-coordinate −(2β−
1)/4.

Theorem 3.21. Let (s, t) be a rational point on the curve T 2 = S3 − 8S − 32.
Define α and β as in Theorem 3.20. Define d = (2(2β − 1)2 − 1)/(2β − 1)4. Then
the Edwards curve x2+y2 = 1+dx2y2 has torsion group isomorphic to Z/2Z×Z/8Z
and a point (x1, y1) with x1 = (2β − 1)(4β − 3)/(6β − 5) and y1 = (2β − 1)(t2 +
50t− 2s3 + 27s2 − 104)/((t+ 3s− 2)(t+ s + 16)).

Proof. Put x8 = 2β− 1. By construction x8 satisfies (2x
2
8− 1)/x48 = d. Furthermore

d =
(8α2 − 1)2(8α2 + 8α + 1)2

(8α2 + 4α+ 1)4
,

so d is a square. By Theorem 3.13, the Edwards curve has torsion group isomorphic
to Z/2Z×Z/8Z. Finally, a straightforward calculation shows that x21+y

2
1 = 1+dx21y

2
1.

The point with U -coordinate −(2β − 1)/4 in Theorem 3.20 is generically a non-
torsion point. The V -coordinate of the point is not stated explicitly in [AM93]. The
point (x1, y1) in Theorem 3.21 is the corresponding point on the Edwards curve.

3.3.2 The Suyama construction

The Suyama family has lower torsion but a simpler parametrization. We briefly
review Suyama’s family and present an analogous result for twisted Edwards curves.

Theorem 3.22 (Suyama). Let σ > 5 be a rational number. Define

α = σ2 − 5, β = 4σ, W1 = β3, A =
(β − α)3(3α+ β)

4α3β
− 2, B =

α

W1
.

Then the Q-torsion group of the elliptic curve EM,A,B : Bv2 = u3 + Au2 + u has a
subgroup isomorphic to Z/6Z.
Define V1 = (σ2 − 1)(σ2 − 25)(σ4 − 25). Then (u1, v1) = (α3/W1, V1/W1) is a
non-torsion point on EM,A,B.

Theorem 3.23. Let σ > 5 be a rational number. Define α, β, V1 as in Theorem 3.22.
Define a = (β−α)3(3α+β) and d = (β+α)3(β−3α). Then the Q-torsion group of
the twisted Edwards curve ax2+ y2 = 1+ dx2y2 has a subgroup isomorphic to Z/6Z,
and (x1, y1) = (αβ/(2V1), (α

3 − β3)/(α3 + β3)) is a non-torsion point on the curve.
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Proof. Define W1, A, B as in Theorem 3.22. Then 2(a+ d)/(a− d) = A and 4/(a−
d) = Bβ2/(2α2)2. The twisted Edwards curve ax2 + y2 = 1 + dx2y2 is birationally
equivalent to the Montgomery curve (Bβ2/(2α2)2)v2 = u3 +Au2 + u, which in turn
is isomorphic to the Montgomery curve Bv2 = u3 +Au2 + u, so its Q-torsion group
has a subgroup isomorphic to Z/6Z by Theorem 3.22.
Define u1, v1 as in Theorem 3.22. Then (u1, v1) is a non-torsion point on Bv2 = u3+
Au2+u, so (u1, v1(2α

2)/β) is a non-torsion point on (Bβ2/(2α2)2)v2 = u3+Au2+u.
Mapping this point to EE,a,d yields exactly (x1, y1):

x1 =
u1

v1(2α2)/β
=

α3

V1(2α2)/β
=
αβ

2V1
and y1 =

u1 − 1

u1 + 1
=
α3 − β3

α3 + β3
.

Hence (x1, y1) is a non-torsion point on ax2 + y2 = 1 + dx2y2.

Remark 3.24 (Small factors in the group order). Most Suyama curves have Q-
torsion group only Z/6Z. Montgomery in [Mon92, Section 6] selected various curves
with torsion group Z/12Z, computed the group orders modulo primes p in the inter-
val [104, 105], and found that the average exponents of 2 and 3 in the group orders
were almost exactly 11/3 and 5/3 respectively. For most Suyama curves with torsion
group Z/6Z the averages are only 10/3 and 5/3. Kruppa noticed that the Suyama
curve with σ = 11 has the average exponents 11/3 and 5/3. His findings were pub-
lished in his Ph.D. thesis [Kru10] in 2010, though the discovery was already in 2007.
After discussions with Zimmermann and Kruppa during a research stay in Nancy
in November 2007 motivated by the “σ = 11”-case we performed an analogous com-
putation for primes in [106, 2 · 106], using Edwards curves with torsion group Z/12Z
constructed as in Section 3.2. It turned out that Edwards curves produce an even
closer match to 11/3 and 5/3.

3.4 Edwards curves with small parameters, large

torsion, and positive rank

One way to save time in computations on twisted Edwards curves is to choose small
curve parameters a and d and a small-height non-torsion base point (X1 : Y1 : Z1).
Another way to save time is to construct curves with large Q-torsion group and
positive rank; see Section 3.3. Unfortunately, essentially all of the curves constructed
in Section 3.3 have a, d,X1, Y1, Z1 of large height.
This section combines these two time-saving techniques, finding twisted Edwards
curves that simultaneously have small parameters a, d, a small-height non-torsion
point (X1 : Y1 : Z1), and large torsion over Q.
The search for small curves for the article [BBLP08] resulted in more than 100
Edwards curves with small-height curve coefficient d and small-height non-torsion
points and at least 12 torsion points over Q. See the website [BBLP] for the complete
list.
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The number of d’s below heightH appears to grow as roughly log2H ; for comparison,
the Atkin-Morain procedure discussed in Section 3.3 generates only about

√

log2H
examples below height H . Of course, one can easily write down many more small
curves if one is willing to sacrifice some torsion.

3.4.1 Torsion group Z/12Z

Theorem 3.12 gives a complete parametrization of all Edwards curves with torsion
group isomorphic to Z/12Z. Any rational point (u, x3, y3, d, x1, y1) on the surface
described by

x3 =
u2 − 1

u2 + 1
, y3 = −

(u− 1)2

u2 + 1
, d =

(u2 + 1)3(u2 − 4u+ 1)

(u− 1)6(u+ 1)2
, x21 + y21 = 1 + dx21y

2
1

gives us a suitable curve for ECM if u /∈ {0,±1} and (x1, y1) is not a torsion point.
Theorem 3.11 lists all affine torsion points.
Assume without loss of generality that |u| > 1: otherwise replace u by 1/u, obtaining
the same d. Write u as a/b for integers a, b satisfying 0 < |b| < a. Define e =
(a2 − b2)/x1 and f = −(a− b)2/y1, and assume without loss of generality that e, f
are integers; otherwise scale a, b appropriately. The curve equation x21 + y21 = 1 +
dx21y

2
1 now implies, after some simplification, the (1, 1, 2, 2)-weighted-homogeneous

equation
(e2 − (a2 − b2)2)(f 2 − (a− b)4) = 16a3b3(a2 − ab+ b2).

There are many small solutions to this equation, and thus we find many of the
desired Edwards curves, as follows. We considered a range of positive integers a.
For each a we enumerated integers b with 0 < |b| < a. For each (a, b) we enumerated
all divisors of 16a3b3(a2 − ab + b2) and added (a2 − b2)2 to each divisor. For each
sum of the form e2 we added (a − b)4 to the complementary divisor, checked for a
square, checked that the corresponding (x1, y1) was a non-torsion point, etc.
After about a week of computation on some computers at LORIA we had found 78
different values of d and checked that we had 78 different j-invariants. Here are two
examples:

• the very small solution (a, b, e, f) = (3, 2, 23, 7) produces the order-3 point
(5/13,−1/13) and the non-torsion point (5/23,−1/7) on the Edwards curve
x2 + y2 = 1 + dx2y2 where d = −11 · 133/52;

• the solution (a, b, e, f) = (15180,−7540, 265039550, 161866240) produces the
non-torsion point (3471616/5300791,−201640/63229) on the Edwards curve
x2 + y2 = 1 + dx2y2 where d = 931391 · 3591053/1400033300482.

3.4.2 Torsion group Z/2Z× Z/8Z

Theorem 3.15 gives a complete parametrization of all Edwards curves with torsion
group isomorphic to Z/2Z× Z/8Z and with a point of order 8 doubling to (±1, 0).
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Any rational point (u, x8, d, x1, y1) on the surface described by x8 = (u2 + 2u +
2)/(u2 − 2), d = (2x28 − 1)/x48, and x

2
1 + y21 = 1 + dx21y

2
1 gives us a suitable curve for

ECM if u /∈ {0,−1,−2} and (x1, y1) is not a torsion point. Theorem 3.14 lists all
affine torsion points.
We consider only u >

√
2. Various transformations of u listed in Theorem 3.15 show

that this does not lose any generality: if 0 < u <
√
2 then 2/u >

√
2, and 2/u

produces the same curve; if u < −2 then −(u+ 2) > 0, and −(u + 2) produces the
same curve; if −2 < u < −1 then −2(u + 1)/(u + 2) > 0, and −2(u + 1)/(u + 2)
produces the same curve; if −1 < u < 0 then −u/(u + 1) > 0, and −u/(u + 1)
produces the same curve.
Write u = a/b, x1 = (a2 + 2ab+ 2b2)/e, and y1 = (a2 + 2ab+ 2b2)/f where a, b, e, f
are integers. Then a, b, e, f satisfy the (1, 1, 2, 2)-weighted-homogeneous equation

(e2 − (a2 + 2ab+ 2b2)2)(f 2 − (a2 + 2ab+ 2b2)2) = (4ab(a+ b)(a + 2b))2.

We found many small solutions to this equation, and thus many of the desired
Edwards curves, by a procedure similar to the procedure used for Z/12Z. We con-
sidered a range of positive integers a. For each a we enumerated integers b between
1 and

⌊
a/
√
2
⌋
. For each (a, b) we enumerated all divisors of (4ab(a + b)(a + 2b))2,

added (a2 + 2ab+ 2b2)2 to each divisor, and searched for squares.
After about a week of computation on some computers at LORIA, we had found 25
different values of d and checked that we had 25 different j-invariants. Here are two
examples:

• the very small solution (a, b, e, f) = (3, 1, 19, 33) produces the order-8 point
(17/7, 17/7) and the non-torsion point (17/19, 17/33) on the Edwards curve
x2 + y2 = 1 + dx2y2 where d = 1612/174;

• the solution (a, b, e, f) = (24882, 9009, 258492663, 580153002) produces the
non-torsion point (86866/18259, 8481/4001) on the Edwards curve x2 + y2 =
1 + dx2y2 where d = 56577192/33414.

3.5 The impact of large torsion

This section reports various measurements of the success probability of EECM-
MPFQ. These measurements demonstrate the importance of choosing a curve with
a large torsion group. They also demonstrate the inaccuracy of several common
methods of estimating the success probability of ECM.

3.5.1 Impact of torsion for 20-bit and 30-bit primes

There are exactly 38635 primes between 219 and 220. As an experiment we fed each
of these primes to EECM-MPFQ with B1 = 256 and d1 = 1; note that d1 is a stage-2
parameter described in detail in [BBLP08, Section 5]. The details of our experiments
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are summarized on [BBLP]. It turned out that the first curve configured into EECM-
MPFQ finds 12467, i.e., 32.27%, of these primes. This curve is the Edwards curve
x2 + y2 = 1 − (24167/25)x2y2, with base point P = (5/23,−1/7); this curve has
torsion group isomorphic to Z/12Z.

We then modified EECM-MPFQ to instead start with the curve x2 + y2 = 1 +
(25921/83521)x2y2, with base point P = (13/7, 289/49), and repeated the same
experiment. This curve has torsion group isomorphic to Z/2Z × Z/8Z; it is one of
the curves that EECM-MPFQ normally tries, although not the first in the list. This
curve finds 32.84% of the primes.

We then made a more drastic modification to EECM-MPFQ, trying two new curves
with smaller torsion groups. The curve x2 + y2 = 1 + (1/36)x2y2, with base point
P = (8, 9), has torsion group only Z/2Z×Z/4Z and finds only 27.49% of the primes,
losing a factor 1.17 compared to the original Z/12Z curve. The curve x2 + y2 =
1 + (1/3)x2y2, with base point P = (2, 3), has torsion group only Z/4Z and finds
only 23.47% of the primes, losing a factor 1.37 compared to the original Z/12Z curve.

As a larger experiment we replaced the 38635 20-bit primes by a random sample of
65536 distinct 30-bit primes and increased (B1, d1) from (256, 1) to (1024, 1). The
same four curves again had remarkably different performance:

• 12.16% of the primes were found by the Z/12Z curve.

• 11.98% of the primes were found by the Z/2Z× Z/8Z curve.

• 9.85% of the primes were found by the Z/2Z× Z/4Z curve.

• 9.00% of the primes were found by the Z/4Z curve.

For comparison, GMP-ECM with a typical Suyama curve (specifically σ = 10) finds
11.68% of the same primes. We also tried GMP-ECM’s Pollard p−1 option; it found
6.35% of the same primes. Normally the p − 1 method is assumed to be a helpful
first step before ECM, because it uses fewer multiplications per bit than an elliptic
curve, but we comment that this benefit is reduced by the p−1 curve (a hyperbola)
having torsion group only Z/2Z.

Figures 3.1 and 3.2 show the results of similar measurements for the same four
EECM curves for many prime powers B1: specifically, every prime power B1 ≤ 500
for the 20-bit primes, and every prime power B1 ≤ 2000 for the 30-bit primes. The
figures show that Z/12Z and Z/2Z×Z/8Z are consistently better than Z/2Z×Z/4Z
(lower) and Z/4Z (lower).

The figures also include measurements for the same GMP-ECM Suyama curve and
p−1 (lower). When B1 is large, the EECM-MPFQ Z/12Z and Z/2Z×Z/8Z curves
find significantly more primes than the GMP-ECM Suyama curve.

Note that [BBLP08] contains colored versions of these two graphs; also the digital
version of this thesis contains colored graphs.
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Figure 3.1: For the set of all 38635 20-bit primes: Measured stage-1 success prob-
abilities for six curves, and nine estimates. Horizontal axis is B1. Vertical axis
is probability. Graphs from top to bottom on right side: (bumpy) EECM-MPFQ
with a Z/2Z × Z/8Z curve; (bumpy) EECM-MPFQ with a Z/12Z curve; (bumpy)
GMP-ECM with a Suyama curve; (smooth) the ρ approximation to smoothness
probability for [1, 220/16]; (smooth) the ρ approximation for [1, 220/12]; (bumpy)
EECM-MPFQ with a Z/2Z×Z/4Z curve; (bumpy) powersmoothness probability for
16Z∩ [219, 220]; (smooth) the ρ approximation for [1, 220/8]; (bumpy) powersmooth-
ness probability for 12Z ∩ [219, 220]; (bumpy) EECM-MPFQ with a Z/4Z curve;
(bumpy) powersmoothness probability for 8Z∩ [219, 220]; (smooth) the ρ approxima-
tion for [1, 220/4]; (bumpy) powersmoothness probability for 4Z∩ [219, 220]; (bumpy)
GMP-ECM with p− 1; (smooth) the u−u approximation for [1, 220].
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Figure 3.2: For a sample of 65536 30-bit primes: Measured stage-1 success prob-
abilities for six curves, and nine estimates. Horizontal axis is B1. Vertical axis
is probability. Graphs from top to bottom on right side: (bumpy) EECM-MPFQ
with a Z/2Z × Z/8Z curve; (bumpy) EECM-MPFQ with a Z/12Z curve; (bumpy)
GMP-ECM with a Suyama curve; (smooth) the ρ approximation to smoothness
probability for [1, 230/16]; (smooth) the ρ approximation for [1, 230/12]; (bumpy)
EECM-MPFQ with a Z/2Z × Z/4Z curve; (bumpy) powersmoothness probability
for 16Z ∩ [229, 230]; (bumpy) EECM-MPFQ with a Z/4Z curve; (smooth) the ρ ap-
proximation for [1, 230/8]; (bumpy) powersmoothness probability for 12Z∩ [229, 230];
(bumpy) powersmoothness probability for 8Z∩ [229, 230]; (smooth) the ρ approxima-
tion for [1, 230/4]; (bumpy) powersmoothness probability for 4Z∩ [229, 230]; (bumpy)
GMP-ECM with p− 1; (smooth) the u−u approximation for [1, 230].
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3.5.2 Review of methods of estimating the success proba-

bility

Consider the fraction of primes p ∈ [L,R] found by stage 1 of ECM with a particular
curve E, point P ∈ E(Q), and smoothness bound B1. Assume that E is chosen to
guarantee t as a divisor of E(Fp).
Standard practice in the literature is to estimate this fraction through the following
series of heuristic approximations:

Pr[uniform random prime p ∈ [L,R] has B1-powersmooth #〈P in E(Fp)〉]
?≈ Pr[uniform random prime p ∈ [L,R] has B1-powersmooth #E(Fp)]

?≈ Pr[uniform random ∈ tZ ∩ [(
√
L− 1)2, (

√
R + 1)2] is B1-powersmooth]

?≈ Pr[uniform random ∈ tZ ∩ [L,R] is B1-powersmooth]

?≈ Pr[uniform random ∈ tZ ∩ [1, R] is B1-powersmooth]

?≈ Pr[uniform random ∈ Z ∩ [1, R/t] is B1-powersmooth]

?≈ ρ(u) where Bu
1 = R/t

?≈ 1/uu.

Here“B1-powersmooth”means “having no prime-power divisors larger than B1,” and
ρ is Dickman’s rho function introduced in [Dic30]. Similar comments apply to stage
2, with B1-powersmoothness replaced by a more complicated notion of smoothness
and with ρ replaced by a standard generalization.
For example, Montgomery in [Mon92, Section 7] estimated the success chance of a
curve with 16 torsion points over Q as the B1-powersmoothness chance for a uniform
random integer in [1, p/16]. Similarly, Silverman and Wagstaff in [SW93] estimated
the success chance of a Suyama curve as the B1-powersmoothness chance for a uni-
form random integer in [1, p/12], following Brent’s comment in [Bre86, Section 9.3]
that choosing a Suyama curve “effectively reduces p to p/12 in the analysis.” (As
mentioned in Section 3.3, a typical Suyama curve has only 6 torsion points over Q,
but a Suyama curve modulo p is guaranteed to have order in 12Z.) Brent, Mont-
gomery, et al. used Dickman’s rho function to estimate the B1-powersmoothness
chance for a uniform random integer.

Inaccuracy of the estimates. There are many reasons to question the accuracy
of the above approximations:

• Dickman’s rho function ρ is asymptotically 1/uu in the loose sense that

(log ρ(u))/(−u log u)→ 1 as u→∞,

but is not actually very close to 1/uu: for example, ρ(2) ≈ 1.11/22, ρ(3) ≈
1.31/33, and ρ(4) ≈ 1.26/44.
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• For each u ≥ 0, the B1-smoothness probability for an integer in [1, Bu
1 ] con-

verges to ρ(u) as B1 →∞, and the same is true for B1-powersmoothness, but
the convergence is actually quite slow.

• Multiplying an element of Z ∩ [1, R/16] by 16 never gains powersmoothness
but can lose powersmoothness when the original exponent of 2 was large, not
an uncommon event among powersmooth integers.

• The ratio of smoothness probabilities for (e.g.) [1, Bu
1 ] and [(1/2)Bu

1 , B
u
1 ] con-

verges to 1 as B1 →∞, but the convergence is again quite slow.

• Lenstra commented in [Len87b, page 660] that an elliptic curve has even order
with probability approximately 2/3, not 1/2. Many subsequent reports (for
example, by Brent in [Bre86, Table 3] and McKee in [McK99, Section 2]) have
lent support to the idea that elliptic-curve orders are somewhat more likely to
be smooth than uniform random integers.

• The group order #E(Fp) is a multiple of the point order #〈P in E(Fp)〉. The
ratio is usually small but often enough to change powersmoothness, as illus-
trated by Example 3.4 in Section 3.1.2.

The overall error is not extremely large but can easily be large enough to interfere
with optimization.
Recall that the curve x2 + y2 = 1 − (24167/25)x2y2, with 12 torsion points, finds
32.27% of the primes in [219, 220] with B1 = 256 and d1 = 1; and that changing
to three other curves with 16, 8, and 4 torsion points changes 32.27% to 32.84%,
27.49%, and 23.47% respectively. We computed several of the standard estimates
for these four success probabilities:

• A uniform random element of 12Z ∩ [219, 220] has a 23.61% chance of being
256-powersmooth. Note that this probability drastically underestimates the
actual ECM smoothness chance. Changing 12 to 16, 8, 4 changes 23.61% to
24.82%, 20.58%, and 16.80% respectively.

• A uniform random element of 12Z∩ [1, 220] has a 30.03% chance of being 256-
powersmooth. Changing 12 to 16, 8, 4 changes 30.03% to 31.30%, 26.43%, and
21.86% respectively.

• A uniform random element of Z ∩ [1, 220/12] has a 30.77% chance of being
256-powersmooth. Changing 12 to 16, 8, 4 changes 30.77% to 33.37%, 27.37%,
and 22.25% respectively.

• If u = (log(220/12))/ log 256 then ρ(u) ≈ 28.19%. Changing 12 to 16, 8, 4
changes 28.19% to 30.69%, 24.98%, and 20.24% respectively.

• If u = (log(220/12))/ log 256 then u−u ≈ 22.88%. Changing 12 to 16, 8, 4
changes 22.88% to 25%, 20.15%, and 16.13% respectively.
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These approximations make 16 seem better than 12 by factors of 1.051, 1.042, 1.085,
1.089, and 1.093, when in fact 16 is better than 12 by a factor of only 1.018. Fig-
ure 3.1 includes, for many prime powers B1, theB1-powersmoothness chance of a uni-
form random element of tZ∩ [219, 220] for four values of t, and ρ((log(220/t))/ logB1)
for four values of t. Figure 3.2 includes analogous results for 30-bit primes. It is clear
that the ρ value is a poor approximation to the powersmoothness chance, and that
the powersmoothness chance is a poor approximation to the ECM success chance.
One can ask whether better approximations are possible. We comment that a fast
algorithm to compute tight bounds on smoothness probabilities appeared in [Ber02],
and that the same algorithm can be adapted to handle powersmoothness, local
conditions such as more frequent divisibility by 2, etc. However, one can also ask
whether approximations are necessary in the first place. ECM is most frequently
used to find rather small primes (for example, inside the number-field sieve), and
for those primes one can simply measure ECM’s performance by experiment.
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Code-based cryptography





Chapter 4

Linear codes for cryptography

The background for code-based cryptography is the theory of error-correcting codes
which came up in the middle of the 20th century, motivated by Claude Shannon’s
article “A mathematical theory of communication” [Sha48]. Shannon lay the foun-
dation for information theory which deals with the transmission of messages over
noisy channels. A message is a string of symbols which can be corrupted during a
transmission in the sense that instead of symbol a symbol b is received. In order to
detect or even correct such a transmission error a message word is sent together with
some redundant information. Specifically, all possible message words of fixed length
over a given alphabet are mapped injectively into a set of codewords. This process is
called encoding. Instead of sending a message directly, the corresponding codeword
is sent over the channel. During this transmission some errors might occur. On the
other end of the channel the receiver tries to retrieve the codeword by correcting
those errors using a decoding algorithm. If the decoding process is successful the
receiver can retrieve the original message from the codeword. The efficiency of such
a decoding algorithm depends on the used code. There are many families of codes
allowing fast and efficient error correction.
Classically, error-correcting codes are used for communication over noisy channels
which appear in all forms of telecommunication but codes are also of interest for
storing data. McEliece in [McE78] proposed to use error-correcting codes for public-
key cryptography. In the public-key setting the data transmission is assumed to
be error-free and errors are deliberately introduced into a codeword as part of the
encryption process. McEliece suggested to create a public and a hidden code. The
hidden code is part of the private key and allows fast error correction. The public
code on the other hand does not come with any structure or obvious decoding
algorithm. Message encryption means mapping the message to a codeword in the
public code and then adding errors to it. Message decryption relies on the secret
connection between public and hidden code. After a conversion step the errors in
the ciphertext can be corrected using the decoding algorithm for the hidden code
and then the original message can be derived using linear algebra.
This chapter gives an overview on linear error-correcting codes and introduces the
McEliece cryptosystem. The organization of this chapter is as follows:

• Section 4.1 introduces basic notation from coding theory.

• The introduction to Goppa codes in Section 4.1.3 is taken in parts from
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[BLP11] which is joint work with Bernstein and Lange.

• Section 4.2 gives the basic definitions of the McEliece and Niederreiter cryp-
tosystem and discusses possible attack scenarios. The description how to re-
duce general decoding to the problem of finding low-weight words is essentially
taken from [BLP08] which is joint work with Bernstein and Lange.

4.1 Linear codes

The McEliece cryptosystem uses error-correcting codes, more specifically classical
Goppa codes. This section provides the reader with the necessary background.
For a more extensive background on coding theory the reader might want to refer
to [MS77] and [HP03].

4.1.1 Basic concepts

Fix a finite field Fq. Unless stated otherwise elements of Fnq are viewed as 1 × n
matrices; the transpose of v ∈ Fnq is denoted by vt. Similarly the transpose of any
matrix Q is denoted by Qt.

Definition 4.1. Given a matrix G ∈ Fk×nq of rank k. The set C =
{
mG : m ∈ Fkq

}
is

called a linear code of length n and dimension k, specifically the linear code generated
by G. The matrix G is called a generator matrix for this code as the rows of G form
a basis of the code. The elements of C are called codewords. A linear code can
also be viewed as the kernel of a matrix. In particular, if the linear code C equals
{
c ∈ Fnq : Hct = 0

}
then the matrix H is called a parity-check matrix for the code.

If q equals 2 we speak of binary linear codes. Otherwise we speak of q-ary linear
codes.

A linear code C is a k-dimensional subspace of an n-dimensional vector space over
the field Fq. We sometimes call a linear code of length n and dimension k an [n, k]
code. The matrices G and H are not unique. Given a generator matrix G for a
linear code C one can easily determine a parity-check matrix H for C by linear
transformations. In particular, if G has systematic form, i.e., G = (Ik|Q) where Q
is a k × (n− k) matrix, then H = (−Qt|In−k) is a parity-check matrix for the code
C.

Definition 4.2. The Hamming distance dist(x, y) between two words x, y in Fnq
is the number of coordinates where they differ. The Hamming weight wt(x) of an
element x ∈ Fnq is the number of nonzero coordinates in x. The minimum distance
of a linear code C is the smallest Hamming distance between different codewords.
In the case that C is a nontrivial linear code the minimum distance is the smallest
Hamming weight of a nonzero codeword in C.

The Hamming distance is a metric on Fnq . Note that the Hamming weight of a word
is equal to its distance to the all-zero word in Fnq . In many cases we will simply
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write weight and distance when speaking of the Hamming weight or the Hamming
distance.

Definition 4.3. A ball of radius w centered at an element x ∈ Fnq is the set of all
elements y ∈ Fnq with dist(x, y) ≤ w.

From now on C denotes a q-ary linear code of length n and dimension k.

Definition 4.4. Let H be a parity-check matrix for C. The syndrome of a vector y
in Fnq with respect to H is the (column) vector Hyt in Fn−kq .

The code C consists of all elements y in Fnq with zero syndrome.

Remark 4.5. Let y = c + e for a codeword c and a weight-w word e. By linearity
one has Hyt = H(c+ e)t = Hct +Het = Het since Hct = 0. If H is a parity-check
matrix for a binary linear code then the syndrome is the sum of the w columns of
H that are indexed by the positions of 1’s in e.

The algorithms in the following chapters need the notion of an information set.

Remark 4.6 (Information sets). An information set of a linear code of length n
and dimension k with generator matrix G is a size-k subset I ⊆ {1, . . . , n} such that
the columns of G indexed by I form an invertible k × k submatrix; this submatrix
is denoted by GI . In particular, G−1

I G is a generator matrix for C in systematic
form (up to permutation of columns). If H is a parity-check matrix with GH t = 0
then the columns of H indexed by {1, . . . , n} \ I form an invertible (n−k)× (n−k)
submatrix.

Let c = mG−1
I G for some vector m in Fkq . Then the I-indexed entries of c form

the information vector m; in particular, these entries are often called information
symbols. The entries of c which are not indexed by I are redundant information,
usually called parity-check symbols.

Similar to the notation GI we use yI for the restriction of a vector y to the positions
indexed by a subset I ⊂ {1, . . . , n}.

4.1.2 The general decoding problem

Definition 4.7. A (w-error-correcting) decoding algorithm for a linear code C re-
ceives a vector y in Fnq and a positive integer w as inputs. The output is the set of
all elements c ∈ C at distance at most w from y; the set is empty if there is no such
c.

The linear codes that are interesting candidates for the McEliece cryptosystem are
codes allowing fast error correction, i.e., fast computation of an error vector e of
weight ≤ w such that y − e lies in C.
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Remark 4.8 (Error-correcting capability). For a vector y and w ≤ ⌊(d− 1)/2⌋ a
decoding algorithm uniquely outputs the closest codeword c if d is the minimum
distance of C. In particular, a linear code with minimum distance d has error-
correcting capability ⌊(d− 1)/2⌋.

Definition 4.9. A list-decoding algorithm is a w-error correcting decoding algorithm
with w > ⌊(d− 1)/2⌋. Such an algorithm outputs a (possibly empty) list of closest
codewords to a given vector y.

In the context of attacking the McEliece cryptosystem we are interested in decoding
algorithms which correct a fixed number of errors. We define the “fixed-distance-
decoding problem” in the following remark.

Remark 4.10 (Fixed-distance decoding). A fixed-distance decoder receives a vector
y in Fnq and a positive integer w as inputs. The output is a set of all elements
e ∈ {y − c : c ∈ C} having weight w; the set can be empty if no such e exists.

Note that the outputs of the fixed-distance-decoding algorithms in this thesis consist
of error vectors e, rather than codewords y − e. In the special case y = 0, a fixed-
distance-decoding algorithm searches for codewords of weight w. Any fixed-distance-
decoding algorithm can easily be adapted to the problem of finding a codeword at
distance between 1 and w from y, the problem of finding a codeword of weight
between 1 and w, the problem of finding a codeword at distance between 0 and w
from y, etc.

Remark 4.11. Finding a good decoding algorithm for a general linear code is a
difficult problem. In the case of the McEliece cryptosystem we will be given a
parity-check matrix of a code with no obvious structure. The goal is to determine a
low-weight word e such that Het = s for a given syndrome s. This problem is called
the syndrome-decoding problem. The corresponding decision problem was proven
NP-complete for binary linear codes in [BMvT78]. For the q-ary case see [Bar94]
and [Bar98, Theorem 4.1].

There are many code families with fast decoding algorithms, e.g., Goppa codes,
(generalized) Reed–Solomon codes, Gabidulin codes, Reed-Muller codes, algebraic-
geometric codes, BCH codes etc. Section 4.1.3 focuses on classical Goppa codes.
For a more extensive study of the aforementioned code families see [MS77] and
more up-to-date [HP03].

The best method currently known to decode a random-looking code is “information-
set decoding” which will be introduced in Section 5.1.1. Note that information-set
decoding—though much more efficient than a brute-force search for a low-weight
word—still needs exponential time in the code length. For the purposes of Sec-
tion 5.4 which deals with asymptotic complexities of information-set-decoding algo-
rithms we now introduce the Gilbert–Varshamov distance.
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Definition 4.12. The Gilbert–Varshamov distance of a q-ary linear code of length
n and dimension k is defined as the maximal integer d0 such that

d0−1∑

i=0

(
n

i

)

(q − 1)i ≤ qn−k. (4.1)

Remark 4.13. To the best of our knowledge the name “Gilbert–Varshamov dis-
tance” is due to Barg in [Bar98, Section 1.2]. It comes from Gilbert’s lower bound
on the size of a linear code with fixed length n and fixed minimum distance d0.
Varshamov’s bound differs only slightly from (4.1). Both bounds are asymptotically
the same; see e.g. [HP03, Section 2.10.6].
If an [n, k] code has Gilbert-Varshamov distance d0 then there exists an (n− k)× n
matrix H over Fq such that every set of d0−1 columns of H is linearly independent.

Another notion needed for the asymptotic analyses are the rate and the error frac-
tion:

Definition 4.14. The information rate or rate describes the amount of information
a code can transmit in proportion to its length; the rate is usually denoted by R. If
a code C has length n and dimension k, then one has R = k/n.

It is common to investigate the asymptotic cost of decoding algorithms for random
linear codes with fixed rate and increasing length. Similarly, one can fix the error-
correcting capability of a code family while increasing its length. This thesis denotes
the error fraction a code is supposed to correct by W .
Our asymptotic analyses only deal with decoding methods for binary linear codes.
For these matters we recall the definition of the binary entropy function.

Definition 4.15. The binary entropy function H2 is defined as H2(x) = −x log2 x−
(1− x) log2(1− x).

4.1.3 Classical Goppa codes

This section reviews classical Goppa codes which were introduced by Valery D.
Goppa in [Gop70] and [Gop71]. For an overview including proofs of certain prop-
erties of Goppa codes and the more general family of alternant codes see [MS77,
Section 12.3].
Fix a prime power q; a positive integer m; a positive integer n ≤ qm; an integer
t < n/m; distinct elements a1, . . . , an in Fqm ; and a polynomial g(x) in Fqm[x] of
degree t such that g(ai) 6= 0 for all i.
The words c = (c1, . . . , cn) in Fnqm with

n∑

i=1

ci
x− ai

≡ 0 (mod g(x)) (4.2)
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form a linear code Γqm(a1, . . . , an, g) of length n and dimension n− t over Fqm .
The code Γqm(a1, . . . , an, g) is a special case of a generalized Reed–Solomon code;
see [MS77, Chapter 10]. The restriction of a generalized Reed–Solomon code over
Fqm to a subfield Fq is called an alternant code; in general the restriction of a code
to a smaller field is called a subfield subcode.

Definition 4.16. The Goppa code Γq(a1, . . . , an, g) with Goppa polynomial g(x) and
support a1, . . . , an is the restriction of Γqm(a1, . . . , an, g) to the field Fq, i.e., the set
of elements (c1, . . . , cn) in Fnq that satisfy (4.2).

Beware that there is a conflicting definition of “support” elsewhere in coding theory.

In order to ensure that a chosen Goppa polynomial g does not vanish at the support
elements a1, . . . , an it is common to choose g to be a nonlinear irreducible element
of Fqm [x]. In this case Γq(a1, . . . , an, g) is called an irreducible Goppa code.

Remark 4.17. The code Γq(a1, . . . , an, g) is a subfield subcode of Γqm(a1, . . . , an, g).
The dimension of Γq(a1, . . . , an, g) is at least n − mt. The minimum distance of
Γq(a1, . . . , an, g) is ≥ t + 1; this is a consequence of Goppa codes being part of the
family of alternant codes/generalized Reed–Solomon codes. For details we refer the
reader to [MS77, Section 12.3] and [HP03, Section 13.2.2].

Goppa codes can be decoded by any decoder for generalized Reed–Solomon codes.
For example, Berlekamp’s algorithm corrects t/2 errors; see e.g. [Ber84] or [HP03,
Section 5.4.2]. Guruswami and Sudan in [GS99] introduced a list-decoding algorithm
for correcting more errors than the minimum distance in a generalized Reed–Solomon
code. The Guruswami–Sudan decoder applied to a Goppa code corrects about n−
√

n(n− t) > t/2 errors.

Remark 4.18 (Efficient decoding of binary Goppa codes). Note that t + 1 is is a
lower bound for the minimum distance. There are Goppa codes whose minimum
distance is much larger. Binary Goppa codes have minimum distance at least 2t+1
([Gop70]1). Patterson in [Pat75] devised a fast polynomial-time decoding algorithm
for correcting t errors in binary Goppa codes with monic and squarefree polyno-
mial g.

Bernstein in [Ber08b] devised a list-decoding method for binary irreducible Goppa
codes which combines the Guruswami–Sudan decoder with Patterson decoding. The
decoder corrects up to n −

√

n(n− 2t− 2) > t errors; again with the small ineffi-
ciency of possibly returning more than one codeword for some inputs. See Chapter 7
and [ABC10] for newer methods.

Remark 4.19 (Parity-check matrix). Let Γq(a1, . . . , an, g) be a Goppa code of
length n, support a1, . . . , an, and Goppa polynomial g of degree t. Fix a basis

1Goppa’s article is written in Russian. The proof can be found in many textbooks, e.g., in
[MS77].
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of Fqm over Fq and write each element of Fqm with respect to that basis. Then a
parity-check matrix for Γq(a1, . . . , an, g) is given by the mt× n matrix

H =









1
g(a1)

1
g(a2)

· · · 1
g(an)

a1
g(a1)

a2
g(a2)

· · · an
g(an)

...
...

. . .
...

at−1
1

g(a1)

at−1
2

g(a2)
· · · at−1

n

g(an)









,

over Fq where each entry is actually a column vector written in the chosen Fq-basis
of Fqm .

The code Γq(a1, . . . , an, g) is often referred to as a “classical” Goppa code since it is
the basic construction of a genus-0 geometric Goppa code which Goppa in [Gop77]
generalized for higher-genus varieties.

Chapter 7 introduces “wild Goppa codes.” For this purpose it is useful to recall the
definition of Γqm(a1, . . . , an, g) as a generalized Reed–Solomon code which means
that Γqm(a1, . . . , an, g) and thus Goppa codes can be constructed by evaluating cer-
tain functions at a1, . . . , an.

Remark 4.20 (Polynomial view of Γqm(a1, . . . , an, g)). Define h(x) =
∏n

i=1(x−ai).
Note that g(x) and h(x) are coprime. For each f ∈ gFqm[x] define

ev(f) =

(
f(a1)

h′(a1)
,
f(a2)

h′(a2)
, . . . ,

f(an)

h′(an)

)

,

where h′ denotes the derivative of h.

If f has degree less than n then one can recover it from the entries of ev(f) by
Lagrange interpolation: namely, f/h =

∑

i(f(ai)/h
′(ai))/(x − ai). Consequently

∑

i(ev(f))i/(x− ai) is 0 in Fqm [x]/g, where (ev(f))i denotes the ith entry of ev(f).

Let (c1, . . . , cn) in Fnqm be such that
∑

i ci/(x − ai) ≡ 0 (mod g(x)). Define f =
∑

i cih/(x− ai) in Fqm [x]. Then f ∈ gFqm[x]. Since the polynomial
∑

i cih/(x− ai)
has degree less than n, also f has degree less than n. Moreover, cj = f(aj)/h

′(aj) =
ev(f)j.

Therefore

Γqm(a1, . . . , an, g) = {ev(f) : f ∈ gFqm[x], deg(f) < n}
= {(f(a1)/h′(a1), . . . , f(an)/h′(an)) : f ∈ gFqm[x], deg(f) < n}.

4.2 Code-based public-key cryptography

This section describes the McEliece cryptosystem and the Niederreiter cryptosystem
and outlines possible attacks.
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4.2.1 The McEliece cryptosystem

For the purposes of the McEliece encryption the generator matrix G of a linear code
over Fq should be seen as a map Fkq → Fnq sending a message m of length k to an
element in Fnq .

McEliece proposed code-based cryptography using binary Goppa codes. This thesis
also considers the possibility of using a Goppa code over a larger alphabet; see
Chapter 6 and Chapter 7.

The McEliece public-key cryptosystem is set up as follows:

• The secret key consists of a random classical Goppa code Γ = Γq(a1, . . . , an, g)
over Fq of length n and dimension k with an error-correction capability of w
errors. A generator matrix G for the code Γ as well as an n× n permutation
matrix P , and an invertible k × k matrix S are randomly generated and kept
secret as part of the secret key. In particular, an efficient decoding algorithm
for Γ is known.

• The parameters n, k, and w are public system parameters.

• The McEliece public key is the k×n matrix Ĝ = SGP and the error weight w.

Information needs to be embedded in a length-k word m ∈ Fkq in order to be suitable
for the encryption algorithm. Thenm can be encrypted with the following algorithm.

Algorithm 4.1: McEliece encryption

Input: A message m ∈ Fkq , the public key Ĝ, and the parameter w.
Output: A ciphertext y ∈ Fnq .

1: Compute mĜ.
2: Hide the message by adding a random error vector e of length n and weight w.
3: Return y = mĜ+ e.

The decryption algorithm 4.2 needs to decode the ciphertext y, i.e., determine the
error vector e. The legitimate receiver of y, i.e., the owner of the private key, can
make use of the hidden Goppa-code structure, in particular of the decoding algorithm
for Γ.

Algorithm 4.2: McEliece decryption

Input: A vector y = mĜ + e ∈ Fnq , and the private key (Γ, G, P, S)

corresponding to Ĝ.
Output: The message m.

1: Compute yP−1 = mSG+ eP−1.
2: Use the decoding algorithm for Γ to find mS. Use linear algebra to retrieve
m. Return m.
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The decryption algorithm works for any McEliece ciphertext y, i.e., for any y which
is an output of Algorithm 4.1. Indeed, in this case y is known to be at distance w
from a vector mSG which is a codeword in Γ. The permutation by P−1 of the errors
in the error vector does not change the weight of this vector, so it does not affect
the decoding algorithm for Γ.

Remark 4.21. McEliece in his original article [McE78] proposed to choose a classi-
cal binary Goppa code of length 1024, dimension ≥ 524 with irreducible polynomial
g of degree t = 50.

4.2.2 The Niederreiter cryptosystem

This section considers a variant of the McEliece cryptosystem published by Niederre-
iter in [Nie86]. Niederreiter’s system, with the same Goppa codes used by McEliece,
has the same security as McEliece’s system, as shown in [LDW94].
Niederreiter’s system differs from McEliece’s system in public-key structure, en-
cryption mechanism, and decryption mechanism. Beware that the specific system in
[Nie86] also used different codes—Goppa codes were replaced by generalized Reed–
Solomon codes—but the Niederreiter system with generalized Reed–Solomon codes
was broken by Sidelnikov and Shestakov in 1992; see [SS92].
The Niederreiter public-key cryptosystem is set up as follows:

• The secret key consists of an n × n permutation matrix P ; a non-singular
(n − k) × (n − k) matrix M ; and a parity-check matrix H for a Goppa code
Γ = Γq(a1, . . . , an, g) of dimension k and error-correcting capability w. In
particular, an efficient decoding algorithm for Γ is known.

• As in the McEliece cryptosystem, the sizes n, k, w are public system parameters,
but a1, . . . , an, g, P , and M are randomly generated secrets.

• The Niederreiter public key is the (n− k)× n matrix Ĥ =MHP .

Information needs to be embedded in a length-n word x ∈ Fnq with w nonzero entries
in order to be suitable for the encryption algorithm. Then x can be encrypted with
the following algorithm; the output is the syndrome of x with respect to the public
matrix Ĥ.

Algorithm 4.3: Niederreiter encryption

Input: A message x ∈ Fnq of weight w and the public key Ĥ .
Output: A ciphertext s ∈ Fn−kq .

1: Compute the syndrome s = Ĥxt.
2: Return s.

In order to decrypt the message one has to find a weight-w vector x having syndrome
s with respect to Ĥ . As in the McEliece cryptosystem, the owner of the private key
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can make use of the hidden Goppa-code structure, in particular of the decoding
algorithm for Γ.

Algorithm 4.4: Niederreiter decryption

Input: A syndrome s = Ĥxt ∈ Fn−kq , and the private key (Γ, H,M, S)

corresponding to Ĥ.
Output: The message x.

1: Compute z with Hzt =M−1s using linear algebra.
2: Use the decoding algorithm for Γ to find the codeword z − xP t. Use linear

algebra to retrieve x. Return x.

The decryption algorithm works for any Niederreiter ciphertext s, i.e., for any s
which is an output of Algorithm 4.3. The legitimate receiver knows the matrices H
and M and can use linear algebra to compute a vector z ∈ Fnq with Hzt =M−1s =
HPxt = H(xP t)t in Step 1. By linearity H(z − xP t)t = 0. Hence, z − xP t is a
codeword in Γ at distance w from z and can be found by the decoding algorithm
for Γ.

Remark 4.22 (Focus on the McEliece cryptosystem). Note that, in a nutshell, de-
cryption of ciphertexts in both the McEliece and the Niederreiter public-key cryp-
tosystem means finding a certain vector of a given weight. In the following the focus
lies on attacking and improving the McEliece cryptosystem.
There are a few attacks on the McEliece cryptosystem which are easier to describe
in terms of a parity-check matrix of the public code; for these cases recall that
computing a parity-check matrix from a given generator matrix is done using only
elementary row operations whose cost will be negligible in comparison to the cost
of the attack.

4.2.3 Security of code-based cryptography

The previous two sections introduced textbook versions of code-based public-key
cryptography. The original McEliece cryptosystem, like the original RSA cryptosys-
tem, is really just a trapdoor one-way function; when used naively as a public-key
cryptosystem it is trivially broken by chosen-ciphertext attacks such as Berson’s at-
tack [Ber97] and the Verheul–Doumen–van Tilborg attack [VDvT02]. I.e., McEliece’s
system as described in the previous sections does not achieve “IND-CCA2 security.”
For instance, encryption of the same message twice produces two different cipher-
texts which can be compared to find out the original message since it is highly
unlikely that errors were added in the same positions.
There are several suggestions to make the McEliece cryptosystem CCA2 secure. In
[KI01] Kobara and Imai show that adding this protection does not significantly in-
crease the cost of the McEliece cryptosystem. Overviews on CCA2-secure versions
of McEliece’s scheme can be found in [EOS06, Chapters 5–6] and [OS08]. All tech-
niques share the idea of scrambling the message inputs. The aim is to destroy any
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relations of two dependent messages which an adversary might be able to exploit.

Remark 4.23 (Key sizes). In a CCA2-secure version of the McEliece cryptosystem,
where the message is scrambled, one can use a systematic generator matrix as public
key. This reduces the public-key size from kn bits to k(n− k) bits: it is sufficient to
store the non-trivial part of the matrix, i.e., the k× (n−k) matrix Q in the notation
above. Similarly for Niederreiter’s system it suffices to store the non-trivial part of
the parity-check matrix, reducing the public-key size from (n− k)n bits to k(n− k)
bits.

4.2.4 Attacking the McEliece cryptosystem

An attacker of the McEliece cryptosystem is faced with the problem of determining
an error vector e given a random-looking generator matrix Ĝ and a vector mĜ+ e.
Finding e is equivalent to finding the encrypted message m: subtracting e from
mĜ + e produces mĜ, and then simple linear transformations produce m.
An attacker who got hold of an encrypted message y has two possibilities in order
to retrieve the original message m.

• Find out the secret code; i.e., find G given Ĝ, or

• Decode y directly for the public code given by Ĝ.

Attacks of the first type are called structural attacks. If G or an equivalently effi-
ciently decodable representation of the underlying code can be retrieved in subexpo-
nential time, this code should not be used in the McEliece cryptosystem. Suitable
codes are such that the best known attacks are decoding random codes.
McEliece in [McE78] observed that “a fast decoding algorithm exists for a general
Goppa code, while no such exists for a general linear code.” This is still true. Though
the algorithms have been improved over the last more than 30 years the best known
methods for decoding a general code all take exponential time.
Canteaut and Chabaud in [CC98, page 368] observed that one can decode a bi-
nary linear code—and thus break the McEliece system—by finding a low-weight
codeword in a larger code. The following remark explains the reduction.

Remark 4.24 (Reduction of the decoding problem). Let C be a binary linear code
of length n, and w a positive integer which is less than half the minimum distance
of C. Let y ∈ Fn2 be at distance w from C. Denote the closest codeword to y by c.
Then y − c is a weight-w element of 〈C, y〉, the linear code spanned by C and y.
Conversely, if C is a linear code of length n over F2 with minimum distance larger
than 2w, then a weight-w element e ∈ 〈C, y〉 cannot be in C, so it must be in 〈C, y〉;
in other words, y − e is an element of C with distance w from y.

The attacker knows the McEliece public key Ĝ which generates a code C. Given a
McEliece ciphertext y = c + e the attacker can simply append y to the rows of Ĝ
to form a generator matrix for the code 〈C, y〉. Since the error vector e has weight
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w which is less than the assumed minimum distance of C, it is a minimum-weight
word in 〈C, y〉. The attacker then applies a low-weight-word finding algorithm to
find e. Similar comments apply if the attacker is given a Niederreiter public key, i.e.,
a parity-check matrix for a public code C. The bottleneck in all of these attacks is
finding the weight-w codeword in 〈C, y〉 which is a difficult problem as discussed in
Remark 4.11.
Beware that there is a slight inefficiency in the reduction from the decoding problem
to the problem of finding low-weight codewords: the code C has dimension k and
y /∈ C, thus 〈C, y〉 has larger dimension, namely k + 1. The user of the low-weight-
codeword algorithm knows that the generator y will participate in the solution, but
does not pass this information to the algorithm.
The following chapter outlines the attack in [BLP08] on the original McEliece pa-
rameters; this attack builds as many other articles before on Stern’s method to find
low-weight words in order to attack the McEliece cryptosystem.



Chapter 5

Collision decoding

The central idea for collision decoding is due to Stern who in [Ste89] published a
method for finding low-weight codewords which makes use of the birthday paradox1.
This chapter discusses attacks against the binary version of the McEliece cryptosys-
tem. This chapter also contains an analysis of the asymptotic cost of information-set
decoding and in particular of Stern’s algorithm.

• Section 5.1 introduces basic information-set decoding and Stern’s algorithm,
essentially following [BLP08] and [BLPvT09].

• Section 5.2 presents the the break of the original McEliece parameters. The re-
sult is based on joint work with Bernstein and Lange and appeared in [BLP08].

• The main differences between the content of Section 5.2 and [BLP08] lie in
Section 5.2.1 and Section 5.2.2; there the improvements to Stern’s algorithm
essentially follow [BLP08] and [Pet10].

• The actual attack on the McEliece cryptosystem is outlined in Section 5.2.4;
the CPU timings from [BLP08, Section 6] are omitted.

• Section 5.3 discusses the improvements on collision decoding which were in-
troduced after [BLP08]; the description of the “birthday speedup” is similar to
[Pet10, Sections 6–7].

• Section 5.4 presents the analysis of the asymptotic cost of information-set
decoding which is joint work with Bernstein, Lange, and van Tilborg and
which appeared in [BLPvT09]. Section 5.4 presents the results of this article.

• The main differences between the content of Section 5.4 and [BLPvT09] are
that the discussion on fixed-distance decoding was moved in parts to Chapter 4
and Section 5.3; also the descriptions of the algorithms in [BLPvT09, Section
2] is omitted since those are given in Section 5.1.

The Stern algorithm is used to look for a error vector e which is known to have
weight w. The assumption throughout this chapter is that there are only a few such
vectors e—if any at all. In most cases there is exactly one target vector e.

1For a detailed discussion of the birthday paradox we refer the reader to Section 9.2.
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5.1 Information-set-decoding algorithms

This section discusses basic information-set-decoding algorithms. The Lee–Brickell
algorithm is a decoding algorithm whereas Stern’s algorithm originally was intended
to find low-weight codewords in a binary linear code. The reduction of decoding to
low-weight-word finding was given in Section 4.2.4.

5.1.1 Lee–Brickell’s algorithm

The algorithm in this section gets as input a ciphertext y in Fn2 , an error weight w,
and a generator matrix G of a binary linear code C of length n and dimension k
with unknown structure.2 The closest codeword c in C has distance w from y.

Remark 5.1 (Information-set decoding). Recall that an information set for C is a
set I of k positions such that G contains an invertible submatrix GI which is formed
by the columns indexed by I. Any information-set decoding algorithm hopes that
the error vector e has a certain error pattern with respect to a given information
set I. Plain information-set decoding hopes that no error occurred among the I-
indexed positions of y. Then, yIG

−1
I is the preimage of a codeword c ∈ C and we

can obtain c as (yIG
−1
I )G.

The extension by Lee and Brickell allows p errors in positions indexed by the infor-
mation set. These p errors can be corrected by finding the p rows of G corresponding
to error indices in I. Leon in [Leo88] and also Krouk in [Kro89] refined Lee–Brickell’s
algorithm by additionally requiring that the error pattern has weight 0 on ℓ positions
outside the information set.

An overview of all error patterns investigated in this chapter is given in Figure 5.2.
In the following we will discuss Lee–Brickell’s algorithm.

Denote by Ga the unique row of G−1
I G in which the column indexed by some a ∈ I

has a 1.

Let p be an integer with 0 ≤ p ≤ w. The algorithm consists of a series of independent
iterations, each iteration making random choices. If the set I chosen in Step 1 does
not lead to a weight-w word in Step 3 another iteration has to be performed. Each
iteration consists of the steps described in Algorithm 5.1.

2The notation Ĝ for the McEliece public key is abandoned. From now on G generates a linear
code with unknown structure. Similarly, H is used instead of Ĥ .
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Algorithm 5.1: Lee–Brickell algorithm

Input: A generator matrix G in Fk×n2 of a binary linear code C, a vector
y ∈ Fn2 , and an integer w ≥ 0.

Output: A weight-w word e ∈ Fn2 with y − e ∈ C if such e exists.

1: Choose a uniform random information set I.
2: Replace y by y − yIG−1

I G.
3: For each size-p subset A ⊆ I: compute e = y −

∑

a∈AGa. If e has weight w
then return e.

4: Go back to Step 1.

Algorithm 5.1 was published by Lee and Brickell in [LB88] who generalized plain
information-set decoding, i.e., the case p = 0, which is due to Prange [Pra62].
The parameter p is chosen to be a small number to keep the number of size-p subsets
small in Step 3. In the binary case p = 2 is optimal as will be shown in Section 5.4.
If e is a uniform random weight-w element of Fn2 , and I is a size-k subset of {1, . . . , n},
then e has probability exactly

LBPr(n, k, w, p) =

(
n− k
w − p

)(
k

p

)(
n

w

)−1

of having weight exactly p on I. Consequently the Lee–Brickell algorithm, given c+e
as input for some codeword c, has probability exactly LBPr(n, k, w, p) of printing e
in the first iteration.
We emphasize that these probabilities are averages over e. The iteration can have
larger success chances for some vectors e and smaller success chances for others. As
an extreme example, take n = 5, k = 1, w = 1, and p = 0, and consider the code
whose only nonzero codeword is (1, 1, 0, 0, 0). If e = (0, 0, 1, 0, 0) or (0, 0, 0, 1, 0), or
(0, 0, 0, 0, 1) then the iteration has chance 1 of printing e; but if e = (1, 0, 0, 0, 0)
or (0, 1, 0, 0, 0) then the iteration has chance only 1/2 of printing e. The value
LBPr(5, 1, 1, 0) = 4/5 is the average of these probabilities over all choices of e.
For the same reason, the average number of iterations used by the Lee–Brickell
algorithm to find e is not necessarily 1/LBPr(n, k, w, p). In the above example, the
average number of iterations is 1 for three choices of e, and 2 for two choices of e. The
overall average, if e is uniformly distributed, is 7/5, while 1/LBPr(5, 1, 1, 0) = 5/4.
We nevertheless use 1/LBPr(n, k, w, p) as a model for the average number of it-
erations used by the Lee–Brickell algorithm to find e. Analogous models appear
throughout the literature on information-set decoding; for example, Stern says in
[Ste89, Section 3] that such models are “a reasonable measure.” We have carried out
computer experiments for many large random codes, and in every case the average
number of iterations was statistically indistinguishable from 1/LBPr(n, k, w, p).

5.1.2 Stern’s algorithm

Given a parity-check matrix H , an error weight w, and a syndrome s, Algorithm 5.2
looks for a weight-w word e ∈ Fn2 such that Het = s. Stern devised the algorithm
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for the case s = 0. Then his algorithm tries to build a codeword of weight w by
identifying w columns of H which sum up to 0; the corresponding column indices
indicate the position of 1’s in a weight-w word.
Stern uses the idea of Lee and Brickell to allow p errors in the information set I. He
also uses Leon’s idea [Leo88] to restrict the number of possible candidates for the
low-weight word e to those vectors having ℓ zeros in prespecified positions outside
the I-indexed columns.
Stern’s algorithm finds a weight-w vector e with Het = s if an information set I
together with sets X , Y , and Z can be found such that e has weights p, p, 0 on the
positions indexed by X , Y , and Z, respectively (see Figure 5.2). The main difference
to Lee–Brickell’s algorithm is that Stern’s algorithm tries to build a weight-w word by
first looking for collisions among sums of few columns restricted to certain positions
and then checks the weight of the column sums arising from the collisions. Dumer
in [Dum89] independently introduced the core idea, although in a more limited form,
and in [Dum91] achieved an algorithm similar to Stern’s.
For a visual interpretation of Algorithm 5.2 we refer the reader to Remark 5.2
and in particular to Figure 5.1. The algorithm has a parameter p ∈ {0, 1, . . . , w}
and another parameter ℓ ∈ {0, 1, . . . , n− k}. The algorithm consists of a series of
independent iterations, each iteration making random choices. If the set I chosen
in Step 1 does not lead to a weight-w word in Step 9 another iteration has to be
performed. Each iteration consists of the steps described in Algorithm 5.2.
Algorithm 5.2 was published by Stern in [Ste89] to look for low-weight codewords
which is the special case s = 0. The algorithm here is described as a fixed-distance-
decoding algorithm; for more discussion on phrasing the algorithm in this way we
refer the reader to Section 5.3.1.

Remark 5.2. Figure 5.1 gives a visualization of one iteration of Stern’s algorithm for
the case s = 0. Without loss of generality assume that I indexes the first k columns

of UH which then can be written as Q =

(
Q1

Q2

)

with Q1 ∈ Fℓ×k2 , Q2 ∈ F
(n−k−ℓ)×k
2 .

The set X indexes columns 1, . . . , k/2 and Y indexes columns k/2 + 1, . . . , k. The
set Z indexes columns k + 1, . . . , k + ℓ. Note that Z also indexes the first ℓ rows of
UH ; in particular, Z indexes the rows of Q1. If a collision can be found between
p columns of Q1 indexed by X and p columns of Q1 indexed by Y , the sum of the
columns on all n − k positions is computed and the weight is checked; if s is the
sum of 2p columns having weight w − 2p then those nonzero positions come from
the rows corresponding to Q2 and can be cancelled by w − 2p ones in the identity
matrix on the right which are not indexed by Z.

The expected number of iterations of Stern’s algorithm as well as how to choose the
parameters p and ℓ are discussed in Section 5.2.

Remark 5.3 (Adaptive information sets). Step 1 can be performed by choosing n−k
indices in {1, . . . , n} uniformly at random and then performing Gaussian elimination
on H in order to see if these columns form an invertible submatrix. Stern suggests a
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Algorithm 5.2: Stern’s algorithm

Input: A parity-check matrix H ∈ F
(n−k)×n
2 for a binary linear code C, a

column vector s ∈ Fn−k2 , and an integer w ≥ 0.
Output: A weight-w element e ∈ Fn2 with Het = s if such e exists.

1: Choose a uniform random information set I and bring H in systematic form
with respect to I: find an invertible U ∈ F

(n−k)×(n−k)
2 such the submatrix of

UH indexed by {1, . . . , n} \ I is the (n− k)× (n− k) identity matrix.
2: Select a uniform random size-⌊k/2⌋ subset X ⊂ I.
3: Define Y = I \X .
4: Select a size-ℓ subset Z of {1, . . . , n} \ I.
5: For each size-p subset A ⊆ X: consider the p columns (UH)a indexed by
a ∈ A and compute φ(A) = s−∑a(UH)a restricted to ℓ rows indexed by Z.

6: For each size-p subset B ⊆ Y : consider the p columns (UH)b indexed by
b ∈ B and compute ψ(B) =

∑

b(UH)b restricted to ℓ rows indexed by Z.
7: For each pair (A,B) such that φ(A) = ψ(B):
8: Compute s′ = s−∑i∈A∪B(UH)i.
9: If wt(s′) = w − 2p then add the corresponding w − 2p columns in the

(n− k)× (n− k) identity submatrix to make s′ the all-zero syndrome.
Return the vector e ∈ Fn2 indicating those columns and the columns
indexed by A ∪ B.

10: Go back to Step 1.

better way of determining an information set I, namely by choosing n− k columns
one by one: check for each newly selected column if it does not linearly depend on
the already selected columns. In theory this adaptive choice could bias the choice
of (X, Y, Z), as Stern points out, but the bias does not seem to have a noticeable
effect on performance.

Remark 5.4. All state-of-the-art decoding attacks since [Ste89] have been increas-
ingly optimized forms of Stern’s algorithm; we will call any decoding algorithm using
Stern’s collision idea a collision-decoding algorithm. Other approaches to decoding,
such as“gradient decoding” ([AB98]), “supercode decoding” ([BKvT99]), and“statis-
tical decoding” (see [Jab01] and [Ove06]), have never been competitive with Stern’s
algorithm for attacking the McEliece cryptosystem.

5.2 A successful attack on the original McEliece

parameters

This section presents the techniques we used to break the original McEliece param-
eters n = 1024, k = 524, and w = 50 for a binary linear code. The results presented
here are based on the article “Attacking and defending the McEliece cryptosys-
tem” [BLP08] which is joint work with Bernstein and Lange. Bernstein implemented
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Figure 5.1: Stern’s algorithm. The weights p, p, 0, and w − 2p indicate how many
columns are taken from the respective parts.

the attack. We used his software to successfully decrypt a McEliece ciphertext which
was created using McEliece’s original parameter settings. The attack uses the re-
duction to low-weight-word finding; i.e., Stern’s algorithm 5.2 with input s = 0.
The new attack is presented as the culmination of a series of improvements that we
have made to Stern’s attack. As a result of these improvements, the attack speeds
are considerably better than the attack speeds reported by Canteaut, Chabaud, and
Sendrier in [CC98] and [CS98]. See Sections 5.2.3 and 5.2.4 for concrete results and
comparisons.

Remark 5.5. For the purpose of this section recall that Stern’s algorithm consists
of basically three steps:

(I) (Updating the matrix) Select an information set I and compute H in system-
atic form with respect to I.

(II) (List building) Compute all possible sums coming from p columns indexed
by a set X on ℓ positions. Similarly, compute all possible sums coming from
p columns indexed by a set Y on ℓ positions. In practice this step can be
implemented efficiently by sorting, by hashing, or by simple table indexing.

(III) (Collision handling) Compare the entries of the two lists. For each collision
between elements of both tables compute the sums of the corresponding 2p
columns on all n− k positions and check the weight of the resulting vector.

Note that for the purpose of the operation count we assume that k is even. For
uneven k without loss of generality let X have size ⌊k/2⌋ and Y size ⌈k/2⌉.
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Plain information-set decoding
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p w − p

ℓ n− k − ℓ
Leon
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Stern

p p 0 w − 2p

Figure 5.2: Distribution of error positions of information-set-decoding algorithms;
this visual comparison is copied from Overbeck and Sendrier’s survey [OS08].

5.2.1 Speeding up Gaussian elimination

The following improvements deal with the first step of Stern’s algorithm, i.e., with
updating the parity-check matrix at the beginning of each iteration with respect to a
newly chosen information set. A selection of an information set is in fact a selection
of n− k columns of H as described in Remark 4.6.

Remark 5.6 (Reusing existing pivots). Each iteration of Stern’s algorithm selects
n− k columns of the parity-check matrix H and applies row operations—Gaussian
elimination— to reduce those columns to the (n− k)× (n− k) identity matrix.
Any parity-check matrix for the same code will produce the same results here. In
particular, instead of starting from the originally supplied parity-check matrix, we
start from the parity-check matrix UH produced in the previous iteration—which,
by construction, already has an (n−k)×(n−k) identity submatrix. About (n−k)2/n
of the newly selected columns will match previously selected columns, and are simply
permuted into identity form with minimal effort, leaving real work for only about
n− k − (n− k)2/n = (k/n)(n− k) of the columns.
Stern states that reduction involves about (1/2)(n−k)3+k(n−k)2 bit operations; for
example, (3/16)n3 bit operations for k = n/2. To understand this formula, observe
that the first column requires ≤ n− k reductions, each involving ≤ n− 1 additions
(mod 2); the second column requires ≤ n − k reductions, each involving ≤ n − 2
additions; and so on through the (n−k)th column, which requires ≤ n−k reductions,
each involving ≤ k additions; for a total of (1/2)(n− k)3 + (k − 1/2)(n− k)2.
We improve the bit-operation count to k2(n−k)(n−k−1)(3n−k)/4n2: for example,
(5/128)n2(n−2) for k = n/2. Part of the improvement is from eliminating the work
for the first (n − k)2/n columns. The other part is the standard observation that
the number of reductions in a typical column is only about (n− k − 1)/2.



90 5.2. A successful attack on the original McEliece parameters

The bit-swapping technique is a way to reduce Gaussian-elimination cost by changing
only one information-set element in each iteration. This idea was introduced by
Omura, according to [CC81, Section 3.2.4]. It was applied to increasingly optimized
forms of information-set decoding by van Tilburg in [vT90] and [vT94], by Chabanne
and Courteau in [CC93], by Chabaud in [Cha93], by Canteaut and Chabanne in
[CC94], by Canteaut and Chabaud in [CC98], and by Canteaut and Sendrier in
[CS98].
This section considers a generalization of bit swapping devised together with Bern-
stein and Lange in [BLP08] which improves the balance between the cost of Gaussian
elimination and the cost of error-searching as will be explained in the following.

Remark 5.7 (Force more existing pivots). Start with the matrix UH from the
previous iteration which contains an (n − k) × (n − k) identity matrix. Instead of
finding a new set of n− k columns which need to be row-reduced—or equivalently
finding a new invertible matrix U—one can artificially reuse exactly n−k−c column
selections, and select the remaining c new columns randomly from among the other
k columns, where c is a new algorithm parameter.3 Then only c columns need to be
newly pivoted. Reducing c below (k/n)(n− k) saves time correspondingly.
Beware, however, that smaller values of c introduce a dependence between iterations
and require more iterations before the algorithm finds the desired weight-w word.
See Section 5.2.3 for a detailed discussion of this effect.

Illustrative example from the literature: Canteaut and Sendrier report in [CS98,
Table 2] that they need 9.85 · 1011 iterations to handle n = 1024, k = 525, w = 50
with their best parameters (p, ℓ) = (2, 18). Stern’s algorithm, with the same (p, ℓ) =
(2, 18), needs only 5.78 ·1011 iterations. Note that these are not the best parameters
for Stern’s algorithm; the parameters p = 3 and ℓ = 28 achieve better results,
needing only 1.85 · 1010 iterations. The total cost for attacking n = 1024, k = 525,
w = 50 with (p, ℓ) = (3, 28)—crudely estimated as in Stern’s article—without any
improvements from [BLP08] amounts to 262.81 bit operations; already considerably
less than Canteaut et al.’s 264.1 bit operations with (p, ℓ) = (2, 18).
Another illustrative example: Canteaut and Chabaud recommend (p, ℓ) = (2, 20) for
n = 2048, k = 1025, w = 112 in [CC98, Table 2], These parameters use 5.067 · 1029
iterations, whereas Stern’s algorithm with the same parameters uses 3.754 · 1029
iterations.
Canteaut and Chabaud claim that Gaussian elimination is the“most expensive step”
in previous attacks, justifying the switch to c = 1. We point out, however, that this
switch often loses speed compared to Stern’s original attack; in particular when aim-
ing at parameter sizes which are interesting for cryptography. For example, Stern’s
original attack (without reuse of existing pivots) uses only 2124.06 bit operations
for n = 2048, k = 1025, w = 112 with (p, ℓ) = (3, 31), beating the algorithm by
Canteaut et al.; in this case Gaussian elimination is only 22% of the cost of each
iteration.

3This section uses the letter c to denote an integer. In this section c does not denote a codeword
as in other parts of the thesis.
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Both c = 1, as used by Canteaut et al., and c = (k/n)(n−k), as used (essentially) by
Stern, are beaten by intermediate values of c. See Section 5.2.3 for some examples
of optimized choices of c.
Adding the first selected row to various other rows cancels all remaining 1’s in the
first selected column. Adding the second selected row to various other rows then
cancels all remaining 1’s in the second selected column.
It has frequently been observed— see, e.g., [Bar06]— that there is an overlap of work
in these additions: about 25% of the rows will have both the first row and the second
row added. One can save half of the work in these rows by simply precomputing the
sum of the first row and the second row. The precomputation involves at most one
vector addition (and is free if the first selected column originally began 1, 1). This
observation leads to the following speedup for Stern’s algorithm.

Remark 5.8 (Faster pivoting). Suppose that we defer additions of r rows; here r
is another algorithm parameter which needs to be tuned with respect to n and in
particular to the number of rows n − k and also r ≤ c. After precomputing all
2r − 1 sums of nonempty subsets of these rows, we can handle each remaining row
with, on average, 1 − 1/2r vector additions, rather than r/2 vector additions. For
example, after precomputing 15 sums of nonempty subsets of 4 rows, we can handle
each remaining row with, on average, 0.9375 vector additions, rather than 2 vector
additions; the precomputation in this case uses at most 11 vector additions. The
optimal choice of r is roughly log2(n − k) − log2 log2(n − k) but interacts with the
optimal choice of c.

See [Pip79] for a much more thorough optimization of subset-sum computations.

Remark 5.9 (Multiple choices of Z). Recall that one iteration of Stern’s algorithm
finds a particular weight-w word if that word has exactly p, p, 0 errors in the column
sets X, Y, Z respectively. We generalize Stern’s algorithm to allow m disjoint sets
Z1, Z2, . . . , Zm with the same X, Y , each of Z1, Z2, . . . , Zm having cardinality ℓ; here
m ≥ 1 is another algorithm parameter.
The cost of this generalization is an m-fold increase in the time spent in the second
and third steps of the algorithm—but the first step, the initial Gaussian elimination,
depends only on X, Y and is done only once. The benefit of this generalization is
that the chance of finding any particular weight-w word grows by a factor of nearly
m.
For example, if (n, k, w) = (1024, 525, 50) and (p, ℓ) = (3, 29), then one set Z1

works with probability approximately 6.336%, while two disjoint sets Z1, Z2 work
with probability approximately 12.338%. Switching from one set to two produces a
1.947× increase in effectiveness at the expense of replacing steps (I), (II), (III) by
steps (I), (II), (III), (II), (III). This is worthwhile if step (I), Gaussian elimination,
is more than about 5% of the original computation. Note that the Roman numerals
denote the steps in the high-level description at the beginning of this section.

The improvements in this section and the next section led to the break of the original
McEliece parameters which will be discussed in Section 5.2.3. For attacking larger
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parameter sets, in particular, as the code length increases the cost for Gaussian
elimination becomes negligible; this will be shown in the asymptotic analysis of
information-set decoding in Section 5.4.
The following section discusses two more improvements we suggested in [BLP08]
which prove to be more significant on the long term.

5.2.2 Speeding up list building and collision handling

The “list-building step” of Stern’s algorithm considers all p-element subsets A of X
and all p-element subsets B of Y , and computes ℓ-bit sums φ(A), ψ(B). Stern [Ste89]
states that this takes 2ℓp

(
k/2
p

)
bit operations for average-size X, Y . Similarly, Can-

teaut et al. [CC98, CS98] mention that there are
(
k/2
p

)
choices of A and

(
k/2
p

)
choices

of B, each using pℓ bit operations.
We comment that, although computing φ(A) means p− 1 additions of ℓ-bit vectors,
usually p− 2 of those additions were carried out before. Simple caching, i.e., using
“intermediate sums”, reduces the average cost of computing φ(A) to only marginally
more than ℓ bit operations for each A. In more detail:

Remark 5.10 (Reusing additions of the ℓ-bit vectors). Computing a vector φ(A)
which is the sum of p columns indexed by A restricted to ℓ positions can be done by
adding the specified p columns in p−1 additions in Fℓ2. Computing vectors φ(A) for
all the

(
k/2
p

)
possible size-p subsets can be done more efficiently than repeating this

process for each of them. Start by computing all
(
k/2
2

)
sums of 2 columns indexed

by I; each sum costs one addition in Fℓ2. Then compute all
(
k/2
3

)
sums of 3 columns

by adding one extra column to the previous results; again restricted to ℓ positions
indexed by Z. Proceed in the same way until all

(
k/2
p

)
sums of p columns on ℓ

positions are computed. This produces all required sums in only marginally more
than one Fℓ2 addition per sum.

The total cost amounts to

2ℓ

((
k/2

2

)

+

(
k/2

3

)

+ · · ·
(
k/2

p

))

.

These costs can be written as 2ℓ (L(k/2, p)− k/2), using L(k, p) =
∑p

i=1

(
k
i

)
as a

shorthand.
This improvement becomes increasingly important as p grows as it saves a factor p
in comparison to Stern’s as well as to Canteaut et al.’s methods.
The last improvement concerns the“collision handling” in Stern’s algorithm. For the
pairs (A,B) with φ(A) = ψ(B) one has to add all the columns indexed by A∪B and
then check their weight. If the vectors φ(A) and ψ(B) were uniformly distributed

among the 2ℓ possible values then on average 2−ℓ
(
k/2
p

)2
checks would need to be done.

The expected number of checks is extremely close to this for almost all matrices H ;
the extremely rare codes with different behavior are disregarded for the purpose of
this analysis.
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Remark 5.11 (Faster additions after collisions). Naive computation of the sum of
2p columns in the third step would take 2p − 1 additions on n − k − ℓ positions;
ℓ positions are known to be zero as a consequence of the collision. However, as
pointed out in [BLP08, Section 4], many of these additions overlap. The algorithm
hopes that the sum of 2p columns has weight w−2p, i.e., that exactly w−2p of n−k
entries equal 1. Each entry has a chance of 1/2 to be 1. In order to save operations,
one computes the result in a row-by-row fashion and uses an early abort: after about
2(w− 2p+1) rows are handled it is very likely that the resulting column vector has
more than the allowed w − 2p nonzero entries and can be discarded. This means
that partial collisions that do not lead to a full collision consume only 2(w− 2p+1)
operations.

Remark 5.12. As mentioned before the “list-building step” and“collision handling”
are the most costly parts of Stern’s algorithm. The bottleneck of the algorithm is the
number of possible p-sums coming from columns indexed by X and Y , respectively.
In order to keep this number manageable p is chosen to be quite small. In order to
balance the cost of “list-building step” and “collision handling” one can choose ℓ as
log2

(
k/2
p

)
. This is good as a rule of thumb but we nevertheless recommend using

the parameter optimization which will be presented in the next section and which
depends on the expected number of iterations.

5.2.3 Analysis of the number of iterations and comparison

Canteaut, Chabaud, and Sendrier [CC98, CS98] announced thirteen years ago that
the original parameters for McEliece’s cryptosystem were not acceptably secure:
specifically, an attacker can decode 50 errors in a [1024, 524] code over F2 in 264.1 bit
operations.
Using the improvements from the previous two sections with parameters p = 2,
m = 2, ℓ = 20, c = 7, and r = 7 the same computation can be done in only 260.55

bit operations, almost a 12× improvement over Canteaut et al. The number of
iterations drops from 9.85 · 1011 to 4.21 · 1011, and the number of bit operations per
iteration drops from 20 · 106 to 4 · 106. As discussed in Section 5.2.4, Bernstein has
achieved even larger speedups in software.
The rest of this section explains how the number of iterations used by the attack is
computed, and then presents similar results for many more sizes [n, k].
The parameter optimization in [BLP08] relies on being able to quickly and accurately
compute the average number of iterations required for the attack.
It is easy to understand the success chance of one iteration of the attack:

• Let I be an information set chosen uniformly at random. A random weight-
w word e has weight 2p among the columns indexed by I with probability
(
k
2p

)(
n−k
w−2p

)/(
n
w

)
. The actual selection of columns is adaptive and thus not

exactly uniform, but as mentioned before this bias appears to be negligible;
we have tried many attacks with small w and found no significant deviation
from uniformity.
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• Let X , Y be disjoint size-(k/2) subsets of I chosen uniformly at random. The
conditional probability of the 2p errors of I-indexed positions in e appearing
as p errors among the positions indexed by X and p errors among the positions

indexed by Y is given by
(
k/2
p

)2
/(

k
2p

)
.

• Let Z be a size-ℓ subset in {1, . . . , n} \ I chosen uniformly at random. The
conditional probability of w − 2p errors avoiding Z, a uniform random se-
lection of ℓ out of the remaining n − k columns, is

(
n−k−(w−2p)

ℓ

)
/
(
n−k
ℓ

)
. As

discussed in Section 5.2.1, we increase this chance by allowing disjoint sets
Z1, Z2, . . . , Zm; the conditional probability of w − 2p errors avoiding at least
one of Z1, Z2, . . . , Zm is

m

(
n−k−(w−2p)

ℓ

)

(
n−k
ℓ

) −
(
m

2

)(n−k−(w−2p)
2ℓ

)

(
n−k
2ℓ

) +

(
m

3

)(n−k−(w−2p)
3ℓ

)

(
n−k
3ℓ

) − · · ·

by the inclusion-exclusion principle.

The product of these probabilities is the chance that Stern’s algorithm finds e after
the first round.
For m = 1 the chance to find e in the first round equals

STPr(n, k, w, ℓ, p) =

(
k/2
p

)2(n−k−ℓ
w−2p

)

(
n
w

) .

Remark 5.13. If iterations were independent, as in Stern’s original attack, then
the average number of iterations would be simply the reciprocal of the product of
the probabilities. But iterations are not, in fact, independent. The difficulty is that
the number of errors in the selected n − k columns is correlated with the number
of errors in the columns selected in the next iteration. This is most obvious with
the bit-swapping technique as used by van Tilburg for the Lee–Brickell algorithm
[vT90, vT94] and by Canteaut et al. [CC98, CS98] for collision decoding (here the
case c = 1). Swapping one selected column for one deselected column is quite likely
to preserve the number of errors in the selected columns and in any case cannot
change it by more than one. The effect decreases in magnitude as c increases,
but iterations also become slower as c increases; optimal selection of c requires
understanding how c affects the number of iterations.

To analyze the impact of c we compute a Markov chain for the number of errors.
generalizing the analysis of Canteaut et al. from c = 1 to arbitrary c. Here are the
states of the chain:

• 0: There are 0 errors in the deselected k columns.

• 1: There is 1 error in the deselected k columns.
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• . . .

• w: There are w errors in the deselected k columns.

• Done: The attack has succeeded.

An iteration of the attack moves between states as follows. Starting from state u,
the attack replaces c selected columns, moving to states u− c, . . . , u−2, u−1, u, u+
1, u+2, . . . , u+c with various probabilities discussed below. The attack then checks
for success, moving from state 2p to state Done with probability

(
⌊k/2⌋
p

)(
⌈k/2⌉
p

)

(
k
2p

)

(

m

(
n−k−(w−2p)

ℓ

)

(
n−k
ℓ

) −
(
m

2

)(n−k−(w−2p)
2ℓ

)

(
n−k
2ℓ

) + · · ·
)

and otherwise staying in the same state.
For c = 1, the column-replacement transition probabilities are mentioned by Can-
teaut et al.:

• state u moves to state u− 1 with probability u(n− k − (w − u))/(k(n− k));

• state u moves to state u+ 1 with probability (k − u)(w − u)/(k(n− k));

• state u stays in state u otherwise.

For c > 1, there are at least three different interpretations of “select c new columns”:

• “Type 1”: Choose a selected column; choose a non-selected column; swap.
Continue in this way for a total of c swaps.

• “Type 2”: Choose c distinct selected columns. Swap the first of these with a
random non-selected column. Swap the second with a random non-selected
column. Etc.

• “Type 3”: Choose c distinct selected columns and c distinct non-selected
columns. Swap the first selected column with the first non-selected column.
Swap the second with the second. Etc.

Type 1 is the closest to Canteaut et al.: its transition matrix among states 0, 1, . . . , w
is simply the cth power of the matrix for c = 1. On the other hand, type 1 has
the highest chance of re-selecting a column and thus ending up with fewer than c
new columns; this effectively decreases c. Type 2 reduces this chance, and type 3
eliminates this chance.
The type-3 transition matrix has a simple description: state u moves to state u+ d
with probability

(
n− k
c

)−1(
k

c

)−1∑

i

(
w − u
i

)(
n− k − w + u

c− i

)(
u

d+ i

)(
k − u

c− d− i

)

.
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For c = 1 this matrix matches the Canteaut-et-al. matrix.
We have implemented4 the type-1 Markov analysis and the type-3 Markov analysis.
To save time we use floating-point computations with a few hundred bits of precision
rather than exact rational computations. We use the MPFI library [RR] (on top
of the MPFR library [HLP+] on top of GMP [Gra]) to compute intervals around
each floating-point number, guaranteeing that rounding errors do not affect our final
results.
As a check we have also performed millions of type-1, type-2, and type-3 simulations
and millions of real experiments decoding small numbers of errors. The simulation
results are consistent with the experimental results. The type-1 and type-3 simu-
lation results are consistent with the predictions from our Markov-chain software.
Type 1 is slightly slower than type 3, and type 2 is intermediate. Bernstein’s attack
software uses type 3. The graphs below also use type 3.

Remark 5.14 (Choosing attack parameters). For each (n, t) in a wide range, we
have explored parameters for the new attack and set new records for the number of
bit operations needed to decode t errors in an [n, n−t ⌈log2 n⌉] code. Figure 5.3 shows
the new records. Note that the optimal attack parameters (p,m, ℓ, c, r) depend on
n, and depend on t for fixed n. In particular, the Markov-chain implementation is
useful to find optimal attack parameters (p,m, ℓ, c, r) for any input (n, k).

5.2.4 Breaking the original McEliece parameters

Bernstein implemented an attack based on the improvements described in the sec-
tions before. Using his software we extracted a plaintext from a ciphertext by
decoding 50 errors in a code of length 1024 and dimension 524 over F2.
If we were running the attack software on a single computer with a 2.4GHz Intel
Core 2 Quad Q6600 CPU then we would need, on average, approximately 1400
days (258 CPU cycles) to complete the attack. Running the software on 200 such
computers—a moderate-size cluster costing under $200000—would reduce the av-
erage time to one week. Since iterations are independent no communication is needed
between the computers.
These attack speeds are much faster than the best speeds reported in the previ-
ous literature. Specifically, Canteaut, Chabaud, and Sendrier in [CC98] and [CS98]
report implementation results for a 433MHz DEC Alpha CPU and conclude that
one such computer would need approximately 7400000 days (268 CPU cycles): “de-
crypting one message out of 10,000 requires 2 months and 14 days with 10 such
computers.”
Of course, the dramatic reduction from 7400000 days to 1400 days can be partially
explained by hardware improvements— the Intel Core 2 Quad runs at 5.54× the
clock speed of the Alpha 21164, has four parallel cores (compared to one), and can
perform three arithmetic instructions per cycle in each core (compared to two). But
these hardware improvements alone would only reduce 7400000 days to 220000 days.

4The software can be found at http://www.win.tue.nl/~cpeters/mceliece.html

http://www.win.tue.nl/~cpeters/mceliece.html
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Figure 5.3: Attack costs for n = 1024, n = 2048, n = 4096, n = 8192. Horizontal
axis is the code rate (n− t ⌈log2 n⌉)/n. Vertical axis is log2(bit operations).

The remaining speedup factor of 150, allowing us to carry out the first successful
attack on the original McEliece parameters, comes from the improvements of the
attack itself.
We ran a distributed attack which involved about 200 computers, with about 300
cores. We gratefully acknowledge contributions of CPU time from the following
sources.

• The Coding and Cryptography Computer Cluster at Technische Universiteit
Eindhoven (TU/e);

• the FACS cluster at the Centrum Wiskunde & Informatica (CWI) in Amster-
dam;

• the Walton cluster at SFI/HEA Irish Centre for High-End Computing;
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• the Department of Electrical Engineering at National Taiwan University;

• the Courbes, Algèbre, Calculs, Arithmétique des Ordinateurs (CACAO) clus-
ter at Laboratoire Lorrain de Recherche en Informatique et ses Applications
(LORIA)5;

• the System Architecture and Networking Distributed and Parallel Integrated
Terminal (sandpit) at TU/e;

• the Argo cluster at the Academic Computing and Communications Center at
the University of Illinois at Chicago (UIC);

• the Center for Research and Instruction in Technologies for Electronic Security
(RITES) at UIC;

• and private cores owned by Daniel J. Bernstein and Tanja Lange.

The computation finished in under 90 days (starting in July 2008, ending at the
beginning of October 2008) and used about 8000 core-days. Most of the cores put in
far fewer than 90 days of work; some of the CPUs were considerably slower than a
Core 2. The error vector was found by the Walton cluster at SFI/HEA Irish Centre
of High-End Computing (ICHEC).

Remark 5.15 (Number of iterations). The Canteaut-et-al. attack uses 9.85 · 1011
iterations on average, with (in the notation of this section) p = 2, ℓ = 18, m = 1,
and c = 1.
To avoid excessive time spent handling collisions in the main loop, we increased ℓ
from 18 to 20. This increased the number of iterations to 11.14 · 1011.
We then increased m from 1 to 5: for each selection of column sets X, Y we try five
sets Z1, Z2, Z3, Z4, Z5. We further increased c from 1 to 32: each iteration replaces
32 columns from the previous iteration. These choices increased various parts of the
per-iteration time by factors of 5 and (almost) 32 respectively; the combined changes
reduced the number of iterations by a factor of more than 6, down to 1.85 · 1011.
In particular, the new parameters m = 2, c = 12 should take only 5000 core-days
on average. But having reached feasibility we decided to proceed with the attack.

5.2.5 Defending the McEliece cryptosystem

This section proposes new parameters for the McEliece cryptosystem with binary
Goppa codes.

Remark 5.16 (Increasing n). The most obvious way to defend McEliece’s cryp-
tosystem is to increase n, the length of the code used in the cryptosystem. McEliece
proposed in [McE78] to use binary Goppa codes whose length is a power of 2, making
the length as large as possible. Like Sendrier [Sen02, page 151] we recommend values

5Since January 2010 CACAO has been superseded by the CARAMEL project.
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of n between powers of 2 which allows considerably better optimization of (e.g.) the
McEliece/Niederreiter public-key size. See below for examples. Aside from a mild
growth in decoding time, there is no obstacle to the key generator using a Goppa
code defined via a field F2m of size much larger than n.

Remark 5.17 (Using list decoding to increase w). As discussed in Remark 4.18
Bernstein devised a list-decoding algorithm for classical irreducible binary Goppa
codes, exactly the codes used in McEliece’s cryptosystem. This algorithm allows the
receiver to efficiently decode approximately n−

√

n(n− 2t− 2) ≥ t+1 errors instead
of t errors. The sender, knowing this, can introduce correspondingly more errors;
the attacker is then faced with a more difficult problem of decoding the additional
errors.
List decoding can, and occasionally does, return more than one codeword within
the specified distance. In CCA2-secure variants of McEliece’s system there is no
difficulty in identifying which codeword is a valid message. Our attack can, in
exactly the same way, easily discard codewords that do not correspond to valid
messages.

We propose concrete parameters [n, k] for various security levels in CCA2-secure
variants of the McEliece cryptosystem. Recall that public keys in these variants are
systematic generator matrices occupying k(n− k) bits.
Remark 5.18 (80-bit security). For (just barely!) 80-bit security against our attack
we propose [1632, 1269] Goppa codes (degree t = 33), with 34 errors added by the
sender. The public-key size here is 1269(1632− 1269) = 460647 bits.
Without list decoding, and with the traditional restriction that the code length n is
a power of 2, the best possibility is [2048, 1751] Goppa codes (t = 27). The public
key here is considerably larger, namely 520047 bits.

Remark 5.19 (128-bit security). For 128-bit security we propose [2960, 2288] Goppa
codes (t = 56), with 57 errors added by the sender. The public-key size here is
1537536 bits.

Remark 5.20 (256-bit security). For 256-bit security we propose [6624, 5129] Goppa
codes (t = 115), with 117 errors added by the sender. The public-key size here is
7667855 bits.

Remark 5.21 (Small keys). For keys limited to 216, 217, 218, 219, 220 bytes, we
propose Goppa codes of lengths 1744, 2480, 3408, 4624, 6960 and degrees 35, 45,
67, 95, 119 respectively, with 36, 46, 68, 97, 121 errors added by the sender. These
codes achieve security levels 84.88, 107.41, 147.94, 191.18, 266.94 against our attack.
In general, for any particular limit on public-key size, codes of rate approximately
0.75 appear to maximize the difficulty of our attack.

5.3 Collision decoding: recent developments

Article [BLP08] triggered a series of papers on improved versions of Stern’s algo-
rithm.
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5.3.1 Fixed-distance decoding

To the best of our knowledge all collision-decoding algorithms used the reduction
to low-weight-word finding which was explained in Section 4.2.4, in particular in
Remark 4.24. The article “Explicit bounds for generic decoding algorithms for code-
based cryptography” [BLPvT09] which is joint work with Bernstein, Lange, and van
Tilborg gives an explicit description of Stern’s algorithm as a fixed-distance-decoding
algorithm. Since then many improvements on information-set decoding have been
described in this way; see e.g., [FS09], [Pet10], [BLP10].
Section 5.1.2 already described Stern’s algorithm as a fixed-distance-decoding algo-
rithm. However, the analysis of the improvements to Stern’s algorithm did not take
this change into account; Chapter 6 will point out the subtle differences between
Stern’s algorithm with input s = 0 and with arbitrary s, respectively.
Chapter 6 describes Stern’s algorithm as a fixed-distance-decoding algorithm for
decoding w errors in a linear code over Fq; moreover, the generalized Stern algorithm
is described in terms of the generator matrix. For q = 2 the algorithm is the same
as the one in [BLPvT09, Section 2]. Chapter 8 describes “ball-collision decoding” as
a fixed-distance-decoding algorithm; it contains collision decoding as a special case
and uses the parity-check matrix.

5.3.2 The birthday speedup

Finiasz and Sendrier in [FS09] presented a further improvement to Stern’s algorithm,
the “birthday speedup”.
Stern splits an information set I into two disjoint sets X and Y , each of size

(
k/2
p

)

(assuming k is even) and searches for collisions among size-p subsets taken from
X and Y . Finiasz and Sendrier propose not to split the information set I into
two disjoint sets but to look more generally for collisions. The split of I into two
disjoint size-(k/2) sets is omitted at the benefit of creating more possible words
having weight 2p among the information set.
The Stern algorithm changes as follows: introduce a new parameter N with 0 ≤
N ≤

(
k
p

)
, remove Steps 2–3, and replace Steps 5–6 in Algorithm 5.2 by the following

two steps.

5: Repeat N times: choose a uniform random size-p set A ⊆ I and consider the
p columns (UH)a indexed by a ∈ A; compute φ(A) = s−

∑

a(UH)a restricted
to ℓ rows indexed by Z.

6: Repeat N times: choose a uniform random size-p set B ⊆ I and consider the
p columns (UH)b indexed by b ∈ B and compute ψ(B) =

∑

b(UH)b restricted
to ℓ rows indexed by Z.

Note that Steps 1, 4, and 7–10 stay the same.

Remark 5.22. The Stern algorithm with“birthday speedup”finds a weight-w vector
e with Het = s if it finds an information set I and size-p subsets A,B ⊆ I such
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that e has weight 2p on positions indexed by A ∪ B and weight 0 on the positions
indexed by Z.

It is possible that a subset chosen in Step 5 is also chosen in Step 6. This case is
allowed in order to benefit from a larger set of possible sums of p rows.
In [FS09] Finiasz and Sendrier give a bound for the cost of collision decoding with
birthday speedup:

min
p

2ℓmin
((

n
w

)
, 2n−k

)

λ
(
n−k−ℓ
w−p

)√(
k+ℓ
p

) , (5.1)

where λ = 1−exp(−1). They conclude that the asymptotic speedup factor compared
to classical collision decoding with parameter p is Θ(p1/4); see [FS09, page 95].
Finiasz and Sendrier did not analyze the complexity of the birthday speedup together
with all speedups discussed in Section 5.2. The q-ary version of collision decoding
in Chapter 6 contains a detailed analysis; it covers q = 2 as a special case.
In practice the size of subsets N will be bigger than

(
k/2
p

)
so that the sets X and

Y overlap. As there are more possible p-sums arising from X and Y Steps 5–6 are
a little more expensive. However, also here one can apply the improvement from
Section 5.2.2 (speeding up “list building” by intermediate sums).
Note that for simplicity of the analysis this section speaks of two sets X and Y
indexing possible p-sums. Another way of describing the birthday speedup is to
construct one single set of p-sums indexed by entries in the information set and
search for collisions within the set. The important point is that one should not try
to build all possible sums coming from p columns in the information set.

Remark 5.23 (Success probability of the first iteration). There are
(
2p
p

)
different

possibilities of splitting 2p errors into two disjoint subsets of cardinality p each. The
probability of not finding an error vector e, which has 2p errors in I, by a fixed size-p

set A and a fixed size-p set B is 1−
(
2p
p

)
/
(
k
p

)2
. If one chooses N sets A and N sets B

uniformly at random the probability of e not being found by any pair (A,B) equals
(

1−
(
2p
p

)/ (
k
p

)2
)N2

≈ exp
(

−N2
(
2p
p

)/(
k
p

)2
)

.

The probability of the first iteration to succeed is thus

(
n

w

)−1(
k

2p

)(
n− k − ℓ
w − 2p

)


1−
(

1−
(
2p

p

)(
k

p

)−2
)N2



 .

Remark 5.24 (Choice of parameters). As in Stern’s algorithm the parameter p is
chosen to be a small number. The parameter ℓ is chosen to balance 2N , the num-
ber of all computed length-ℓ vectors φ(A) and ψ(B), with the number of expected
collisions on ℓ positions which is N2/2ℓ. Similarly to Remark 5.12 let ℓ = log2N .
This algorithm works for any numbers N less than or equal to

(
k
p

)
, the number of all

possible size-p subsets taken from an information set I. There is no point in choosing
N larger than this number since otherwise all possible combinations of p elements

out of I could be deterministically tested. A sensible choice for N is
(
k
p

)/√(
2p
p

)
.
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5.4 Decoding complexity comparison

The break of the original McEliece parameters described in Section 5.2 was quite
costly, and it is not clear how well the modifications to Stern’s algorithm presented
in Section 5.2 scale to other sizes. Extrapolation from examples is dangerous: for
example, the Canteaut–Chabaud decoding algorithm of [CC98] was claimed to be
an improvement over [Ste89], but was shown in Section 5.2 to be worse than [Ste89]
for large code lengths, including 1024.
One mathematically pleasing way to measure the scalability of an algorithm is to
compute its asymptotic cost exponent as a function of the code rate R and the error
fraction W . This section analyzes the asymptotic cost of information-set decod-
ing. In particular, the cost of the Lee–Brickell algorithm and collision decoding are
analyzed.
The results presented here are based on the article “Explicit bounds for generic
decoding algorithms for code-based cryptography” [BLPvT09] which is joint work
with Bernstein, Lange, and van Tilborg.

5.4.1 Motivation and background

We consider binary linear codes of length n, code rate R = k/n, and error fraction
W = w/n. In order to compare the asymptotic cost of information-set-decoding
algorithms define the exponent α(R,W ) as follows.

Remark 5.25. Let

α(R,W ) = (1−R−W ) log2(1−R−W )− (1−R) log2(1−R)− (1−W ) log2(1−W ).

Then the simplest form of information-set decoding takes time 2(α(R,W )+o(1))n to find
Wn errors in a dimension-Rn length-n binary code if R and W are fixed while
n → ∞. Unfortunately, the asymptotic formula 2(α(R,W )+o(1))n is too imprecise to
see typical algorithm improvements. An n× speedup, for example, is quite valuable
in practice but does not change the cost exponent.

Van Tilburg in his Ph.D. thesis [vT94, Section 7.4], discusses the “bounded-hard-
decision-decoding” case 1−R = H2(2W ) with α(R,W ) = H2(W )− (1−R)H2(

W
1−R

)
and the “bounded-soft-decision-decoding” case 1 − R = H2(W ) with α(R,W ) =
(1−R)(1−H2(

W
1−R

)); where H2 is the binary entropy function. An algorithm that
achieves a smaller cost exponent is obviously an improvement for sufficiently large
n, if R and W are fixed.
The main objective of this section is to build a much more precise framework for the
systematic analysis and comparison of information-set-decoding algorithms. We use
the Θ-notation for giving results of the cost analysis and note that “g(n) = Θ(f(n))”
means that g is asymptotically bounded by a constant times f from above and also
by a (different) constant times f from below.
The notation α(R,W ) defined above is reused throughout this section, along with
the notation β(R,W ) =

√

(1− R−W )/((1−R)(1−W )).
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Recall that information-set-decoding algorithms search for certain error patterns;
see Figure 5.2 in Section 5.1. The success probability of the first iteration of Lee–
Brickell’s algorithm and Stern’s algorithm can be computed using combinatorics. As
a model for the success probabilities take

• LBPr(n, k, w, p) =
(
n
w

)−1(n−k
w−p

)(
k
p

)
for the first iteration of the Lee–Brickell

algorithm to succeed (see Section 5.1.1); and

• STPr(n, k, w, ℓ, p) =
(
n
w

)−1(k/2
p

)2(n−k−ℓ
w−2p

)
for the first iteration of the plain Stern

algorithm to succeed (see Section 5.2.3).

We will put bounds on these probabilities by using the following bounds on the
binomial coefficients.

Remark 5.26. Define ǫ : {1, 2, 3, . . .} → R by the formula

m! =
√
2π mm+1/2 e−m+ǫ(m). (5.2)

The classic Stirling approximation is ǫ(m) ≈ 0. We will use a tighter bound on ǫ,
namely

1

12m+ 1
< ǫ(m) <

1

12m

which was proven by Robbins in [Rob55].

5.4.2 Asymptotic cost of the Lee–Brickell algorithm

This section introduces and analyzes LBCost(n, k, w, p), a model of the average time
used by the Lee–Brickell algorithm. Define

LBCost(n, k, w, p) =

(
1

2
(n− k)2(n + k) +

(
k

p

)

p(n− k)
)

· LBPr(n, k, w, p)−1,

where LBPr is the success probability of one iteration of the Lee–Brickell algorithm.
The term 1

2
(n−k)2(n+k) is a model of row-reduction time, exactly as in [Ste89];

(
k
p

)

is the number of size-p subsets A of {1, 2, . . . , k}; and p(n−k) is a model of the cost
of computing y −

∑

a∈AGa. Each vector Ga has n bits, but the k bits in columns
corresponding to I can be skipped, since the sum of those columns is known to have
weight p.

There can be many codewords at distance w from y if w is not below half the
minimum distance of the code. In some applications, any of those codewords are
acceptable, and a decoding algorithm can be stopped as soon as it finds a single
codeword. One can use LBCost(n, k, w, p)/#{distance-w codewords} as a model of
the cost of the Lee–Brickell algorithm in those applications.
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We write the cost exponent of the Lee–Brickell algorithm as 2(α(R,W )+o(1))n where the
o(1) part is specified by means of an “error term” LBErr(n, k, w, p) which is defined
as

LBErr(n, k, w, p) =
k!

(k − p)!kp
w!

(w − p)!wp
(n− k − w)!(n− k − w)p

(n− k − w + p)!

eǫ(n−k)+ǫ(n−w)

eǫ(n−k−w)+ǫ(n)
.

The following analysis will show that this error term is close to 1 as n goes to infinity.
The following lemma puts upper and lower bounds on LBPr(n, k, w, p). We assume
that the code rate R = k/n and error fractionW = w/n satisfy 0 < W < 1−R < 1.

Lemma 5.27. LBPr(n, k, w, p) equals

2−α(R,W )n 1

p!

(
RWn

1−R −W

)p
1

β(R,W )
LBErr(n, k, w, p).

Furthermore

(1− p
k
)p(1− p

w
)p

(1 + p
n−k−w

)p
e
−

1
12n

(
1 + 1

1−R−W

)

< LBErr(n, k, w, p) < e
1

12n

(
1

1−R
+ 1

1−W

)

.

Proof. Replace binomial coefficients by factorials, factor out the p = 0 case, use the
refined Stirling formula (5.2), and factor out LBErr:

LBPr(n, k, w, p) =

(
n−k
w−p

)(
k
p

)

(
n
w

) =
(n− k)!

(w − p)!(n− k − w + p)!

k!

p!(k − p)!
w!(n− w)!

n!

=
(n− k)!(n− w)!
(n− k − w)!n! ·

1

p!

k!

(k − p)!
w!

(w − p)!
(n− k − w)!

(n− k − w + p)!

=
(n− k)n−k+1/2(n− w)n−w+1/2

(n− k − w)n−k−w+1/2nn+1/2
· e

ǫ(n−k)+ǫ(n−w)

eǫ(n−k−w)+ǫ(n)

· 1
p!

k!

(k − p)!
w!

(w − p)!
(n− k − w)!

(n− k − w + p)!

=
(n− k)n−k+1/2(n− w)n−w+1/2

(n− k − w)n−k−w+1/2nn+1/2

kpwp LBErr(n, k, w, p)

p!(n− k − w)p .

Substitute k = Rn, w = Wn, (1−R)1−R(1−W )1−W /(1−R−W )1−R−W = 2−α(R,W ),
and (1− R−W )1/2(1− R)−1/2(1−W )−1/2 = β(R,W ):

LBPr(n, k, w, p) =
(1− R)n−Rn+1/2(1−W )n−Wn+1/2

(1− R−W )n−Rn−Wn+1/2

(RWn2)p LBErr(n, k, w, p)

p!((1−R −W )n)p

= 2−α(R,W )n 1

β(R,W )

(RWn)p LBErr(n, k, w, p)

p!(1− R−W )p
.

This is the desired equation for LBPr. Robbins’s bounds

ǫ(n− k − w) > 0,

ǫ(n) > 0,

ǫ(n− k) < 1/(12(n− k)) = 1/(12n(1− R)), and
ǫ(n− w) < 1/(12(n− w)) = 1/(12n(1−W )),
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together with elementary bounds such as

k!/((k − p)!kp) = k(k − 1) · · · (k − p + 1)/kp ≤ 1,

produce the stated upper bound on LBErr(n, k, w, p). The lower bound is derived
in a similar way, using

k!/((k − p)!kp) = k(k − 1) · · · (k − p+ 1)/kp ≥ (k − p)p/kp = (1− (p/k))p.

Note that for fixed rate R, fixed error fraction W , and fixed p the error factor
LBErr(n,Rn,Wn, p) is close to 1 as n tends to infinity.
The following corollaries analyze the asymptotics of LBCost(n, k, w, p) for p equal
to 0, 1, 2, and 3. Recall that p = 0 is the plain information-set decoding algorithm
due to Prange [Pra62]. It turns out that p = 2 is optimal.

Corollary 5.28. LBCost(n,Rn,Wn, 0) = (c0+O(1/n))2
α(R,W )nn3 as n→∞ where

c0 = (1/2)(1−R)(1− R2)β(R,W ).

Proof. LBCost(n,Rn,Wn, 0) = (1/2)(n − Rn)2(n + Rn)/LBPr(n,Rn,Wn, 0) =
(1/2)(1− R)(1−R2)n3/LBPr(n,Rn,Wn, 0).
By Lemma 5.27, LBPr(n,Rn,Wn, 0) = 2−α(R,W )n(1/β(R,W )) LBErr(n,Rn,Wn, 0),
and the LBErr factor is 1 +O(1/n).

Corollary 5.29. LBCost(n,Rn,Wn, 1) = (c1+O(1/n))2
α(R,W )nn2 as n→∞ where

c1 = (1/2)(1−R)(1− R2)(1− R−W )(1/RW )β(R,W ).

Proof. The numerator of LBCost(n,Rn,Wn, 1) is (1/2)(n−Rn)2(n+Rn)+Rn(n−
Rn) = ((1/2)(1−R)(1−R2)+R(1−R)/n)n3. The denominator LBPr(n,Rn,Wn, 1)
is similar to the denominator LBPr(n,Rn,Wn, 0) analyzed above but has an extra
factor RWn/(1− R−W ).

Corollary 5.30. LBCost(n,Rn,Wn, 2) = (c2+O(1/n))2
α(R,W )nn as n→∞ where

c2 = (1−R)(1 +R2)(1− R−W )2(1/RW )2β(R,W ).

Proof. The numerator (1/2)(n−Rn)2(n+Rn) +Rn(Rn− 1)(n−Rn) has leading
coefficient (1/2)(1−R)2(1 +R) +R2(1−R) = (1/2)(1−R)(1 +R2). The denomi-
nator LBPr(n,Rn,Wn, 2) is similar to LBPr(n,Rn,Wn, 1) but has an extra factor
RWn/(2(1− R−W )).

Corollary 5.31. LBCost(n,Rn,Wn, 3) = (c3+O(1/n))2
α(R,W )nn as n→∞ where

c3 = 3(1− R)(1−R −W )3(1/W )3β(R,W ).

Proof. The numerator of LBCost(n,Rn,Wn, 2) is dominated by (3/6)k3(n − k) =
(1/2)R3(1 − R)n4. The denominator is similar to LBPr(n,Rn,Wn, 2) but has an
extra factor RWn/(3(1−R −W )).
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Comparing Corollary 5.28, Corollary 5.29, Corollary 5.30, and Corollary 5.31 shows
that the cost ratio LBCost(n,Rn,Wn, p + 1)/LBCost(n,Rn,Wn, p) is approxi-
mately (1 − R − W )/(RWn) for p = 0; 2(1 + R2)(1 − R − W )/((1 − R2)RWn)
for p = 1; and 3R2(1 − R −W )/((1 + R2)W ) for p = 2. Note that for p = 0 and
p = 1 the costs are dominated by row reduction, while for larger p the costs are
dominated by the work of handling all size-p subsets of I. This is why the costs do
not further decrease by factors of n for p = 2 and beyond. Whether p = 3 is better
than p = 2 depends the sizes of R andW ; in particular, p = 2 is best in the common
case where W is small.
Note that the results are stated for arbitrary R and W . In the context of the
McEliece cryptosystem W is a function of R, namely W = (1− R)/ log2 n.
With this particular W one gets α(R,W ) and β(R,W ) as

α(R, (1−R)/ log2 n) = (1− R)(log2 n− 1)/ log2 n
(
log2(1−R) + log2(log2 n− 1)

− log2 log2 n
)
− (1− R) log2(1− R)

− (1− (1− R)/ log2 n) log2(1− (1−R)/ log2 n),
β(R, (1−R)/ log2 n) =

√

(log2 n− 1)/(log2 n− 1 +R).

For an analysis of α(R, (1−R)/ log2 n) and in particular LBCost for typical McEliece
rates and error fractions see Section 5.4.4.

5.4.3 Complexity of Stern’s algorithm

This section shows that p has a much larger impact on the performance in Stern’s
algorithm and in particular it shows that p grows with n. The optimal ℓ is approx-
imately log2

(
k/2
p

)
.

We introduce and analyze STCost(n, k, w, ℓ, p), a model of the average time used by
Stern’s algorithm. Define

STCost(n, k, w, ℓ, p) =

1
2
(n− k)2(n+ k) + 2

(
k/2
p

)
pℓ+ 2

(
k/2
p

)2
p(n− k)/2ℓ

STPr(n, k, w, ℓ, p)
,

where STPr is the success probability of Stern’s algorithm as defined above. As
in LBCost the term 1

2
(n− k)2(n+ k) is a model of row-reduction time;

(
k/2
p

)
is the

number of size-p subsets A of X ; pℓ is a model of the cost of computing φ(A);
(
k/2
p

)
is

the number of size-p subsets B of Y ; pℓ is a model of the cost of computing ψ(B). As

in [Ste89] et al.,
(
k/2
p

)2
/2ℓ is used as a model for the number of colliding pairs (A,B),

i.e., the number of pairs (A,B) such that φ(A) = ψ(B). For each collision 2p(n−k)
is a model of the cost of computing s −

∑

i∈A∪B(UH)i. Note that this cost model
does not take the improvements from [BLP08] (Section 5.2) into account. Variants
such as bit swapping will be discussed in Remark 5.33. We emphasize that Stern’s
algorithm is seen here as a fixed-distance-decoding algorithm in order to make a
fair comparison to Lee–Brickell’s algorithm possible. To the best of our knowledge
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article [BLPvT09] was the first to give an explicit version of Stern’s algorithm as
fixed-distance-decoding algorithm; as opposed to an algorithm for finding low-weight
words— see Algorithm 5.2 and Algorithm 6.1 for q = 2.

We are going to write the cost exponent of Stern’s algorithm as 2(α(R,W )+o(1))n where
we specify the o(1) part by means of an “error term” STErr(n, k, w, ℓ, p) which is
defined as

STErr(n, k, w, ℓ, p) =

(
(k/2)!

(k/2− p)!(k/2)p
)2

· w!

(w − 2p)!w2p
· (n− k − ℓ)!(n− k)

ℓ

(n− k)!

· (n− k − w)!
(n− k − ℓ− w + 2p)!(n− k − w)ℓ−2p

· e
ǫ(n−k)+ǫ(n−w)

eǫ(n−k−w)+ǫ(n)
,

again using ǫ(i) from equation (5.2).

We will now prove bounds on STPr(n, k, w, ℓ, p). We assume that the code rate
R = k/n and error fraction W = w/n satisfy 0 < W < 1− R < 1.

Lemma 5.32. If 2p < ℓ then STPr(n, k, w, ℓ, p) equals

2−α(R,W )n 1

(p!)2

(
RWn

2(1− R−W )

)2p(
1− R−W

1−R

)ℓ
1

β(R,W )
STErr(n, k, w, ℓ, p).

Furthermore

(1 − 2p
k
)2p(1 − 2p

w
)2p(1 − n−k−ℓ−w+2p

n−k−w
)ℓ−2pe

−
1

12n

(
1 + 1

1−R−W

)

< STErr(n, k, w, ℓ, p) <

(1 + ℓ−1
n−k−ℓ+1

)ℓe
1

12n

(
1

1−R
+ 1

1−W

)

.

Proof. Replace binomial coefficients by factorials, factor out the (p, ℓ) = (0, 0) case,
use the refined Stirling formula (5.2), and factor out STErr:

STPr(n, k, w, ℓ, p) =

(
k/2

p

)2(
n− k − ℓ
w − 2p

)(
n

w

)−1

=
(n− k − ℓ)!

(w − 2p)!(n− k − ℓ− w + 2p)!

(
(k/2)!

p!(k/2− p)!

)2
w!(n− w)!

n!

=
(n− k)!(n− w)!
(n− k − w)!n! ·

(
1

p!

(k/2)!

(k/2− p)!

)2
w!

(w − 2p)!

(n− k − w)!
(n− k − ℓ− w + 2p)!

(n− k − ℓ)!
(n− k)!

=
(n− k)n−k+1/2(n− w)n−w+1/2

(n− k − w)n−k−w+1/2nn+1/2
· e

ǫ(n−k)+ǫ(n−w)

eǫ(n−k−w)+ǫ(n)

·
(
1

p!

(k/2)!

(k/2− p)!

)2
w!

(w − 2p)!

(n− k − ℓ)!
(n− k)!

(n− k − w)!
(n− k − ℓ− w)!

(n− k − ℓ− w)!
(n− k − ℓ− w + 2p)!

=
(n− k)n−k+1/2(n− w)n−w+1/2

(n− k − w)n−k−w+1/2nn+1/2

(n− k − w)ℓ
(n− k)ℓ

(k/2)2pw2p

(p!)2(n− k − w)2p STErr(n, k, w, ℓ, p).
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Substitute k = Rn, w =Wn, α(R,W ), and β(R,W ) to obtain:

STPr(n, k, w, ℓ, p)

=
(1−R)n−Rn+1/2(1−W )n−Wn+1/2

(1− R−W )n−Rn−Wn+1/2

(n(1− R−W ))ℓ

(n(1−R))ℓ
(RWn2)2p STErr(n, k, w, ℓ, p)

4p(p!)2((1−R −W )n)2p

= 2−α(R,W )n 1

β(R,W )

(
1− R−W

1−R

)ℓ
(RWn)2p STErr(n, k, w, ℓ, p)

4p(p!)2(1− R−W )2p
.

This is the desired equation for STPr. Similar to the proof of Lemma 5.27 we get
upper and lower bounds on STErr by applying Robbins’s bounds on ǫ(n − k − w),
ǫ(n), ǫ(n− k), and ǫ(n− w) as well as elementary bounds such as

(k/2)!/ ((k/2− p)! (k/2)p) = k/2 (k/2− 1) · · · (k/2− p+ 1)/ (k/2)p ≤ 1

and

(k/2)!/ ((k/2− p)! (k/2)p) = k/2 (k/2− 1) · · · (k/2− p + 1)/ (k/2)p

≥ (k/2− p)p/ (k/2)p = (1− 2p/k)p .

Note that the bounds for STErr do not converge for large p. It is common folklore—
see, for example, [OS08]—that ℓ is optimally chosen as log2

(
k/2
p

)
, balancing

(
k/2
p

)

with
(
k/2
p

)2
/2ℓ. However, starting from this balance, increasing ℓ by 1 produces

better results: it chops 2
(
k/2
p

)2
p(n−k)/2ℓ in half without seriously affecting 2

(
k/2
p

)
pℓ

or STPr(n, k, w, ℓ, p). Choosing ℓ close to log2
(
k/2
p

)
+ log2(n− k) would ensure that

2
(
k/2
p

)
pℓ dominates but would also significantly hurt STPr.

With any reasonable choice of ℓ, increasing p by 1 means that the dominating
term 2

(
k/2
p

)
pℓ increases by a factor of approximately k/(2p) while the denominator

STPr(n, k, w, ℓ, p) increases by a factor of approximately (k/2p)2w2/(n − k − w)2.
Overall STCost(n, k, w, ℓ, p) decreases by a factor of approximately (k/2p)w2/(n −
k − w)2 = (R/2)(W/(1 − R −W ))2(n/p). The improvement from Lee–Brickell to
Stern is therefore, for fixed R and W , more than any constant power of n.

5.4.4 Implications for code-based cryptography

The standard choices w = t and k = n − t⌈log2 n⌉ for the McEliece parameters
imply that the code rate R = k/n and the error fraction W = w/n are related
by W = (1 − R)/⌈log2 n⌉. For example, if R = 1/2, then W = 1/(2⌈log2 n⌉).
Consequently W → 0 as n→∞.
The function

α(R,W ) = (1−R−W ) log2(1−R−W )− (1−R) log2(1−R)− (1−W ) log2(1−W )
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has series expansion −W log2(1−R)+W 2R/(2(1−R) log 2)+ · · · aroundW = 0. In
particular, α(R, (1−R)/⌈log2 n⌉) = (−(1−R) log2(1−R)+o(1))/ log2 n as n→∞.
For example, α(1/2, 1/(2⌈log2 n⌉)) = ((1/2) + o(1))/ log2 n, so

LBCost(n, (1/2)n, (1/2)n/⌈log2 n⌉, 0) = 2(1/2+o(1))n/ log2 n.

Note the distinction between the sublinear exponent in attacks against the McEliece
cryptosystem and the linear exponents often quoted for asymptotic information-set
decoding. The critical difference is that the error fraction in the McEliece cryp-
tosystem is Θ(1/ log2 n) for a fixed rate R while the Gilbert–Varshamov bound is
Θ(1).

Taking more terms in the α(R,W ) series shows that

2α(R,W )n = (1−R)−WneW
2Rn/(2(1−R)) · · · =

(
1

1− R

)w

eRWw/(2(1−R)) · · · ;

e.g., 2α(R,W )n = 2weWw/2 · · · for R = 1/2. For example, for McEliece’s original
R = 524/1024 and W = 50/1024, the leading factor (1/(1−R))w is 251.71..., and the
next factor eRWw/(2(1−R)) is 21.84..., with product 253.55..., while α(R,W ) = 53.65 . . ..

The detailed analyses in this section, such as Lemma 5.27, allow much more precise
comparisons between various decoding algorithms. For example, increasing p from
0 to 2 saves a factor (R2(1−R2)/(1+R2)+ o(1))n2/(log2 n)

2 in LBCost(n,Rn, (1−
R)n/⌈log2 n⌉, p), and increasing p from 2 to 3 loses a factor Θ(log2 n).

Adding an extra error, while leaving R constant, increases the cost by a factor of
approximately 1/(1−R); more precisely, approximately eR/(2 log2 n)/(1−R). Adding
an extra code dimension, while leavingW constant, has a different effect: it increases
the cost by a factor of approximately (1− R)/(1− R−W ) ≈ 1 + 1/ log2 n.
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Figure 5.4: Relations between variants of information-set-decoding algorithms de-
signed to reduce time spent on row reduction. By plain ISD we mean for the sim-
plest case of information-set decoding (Lee–Brickell (LB) with p = 0); CC stands
for the Canteaut–Chabaud tweak.
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Remark 5.33. There are several variants of information-set decoding designed to
reduce the cost of row reduction, sometimes at the expense of success probability.
E.g., van Tilburg’s version of the Lee–Brickell algorithm [vT90] and the Canteaut–
Chabaud version of Stern’s algorithm [CC98]. Both variants use the bit swapping
technique outlined in Section 5.2.1; van Tilburg saves a non-constant factor for Lee–
Brickell but the gain of the Canteaut–Chabaud algorithm is at most a factor 1+o(1)
over Stern. The critical point is that for large n row reduction takes negligible time
inside Stern’s algorithm, since p is large.
What does save a non-constant factor compared to Stern’s algorithm is the sugges-
tion in [BLP08] to reuse additions among sets of p columns. The savings here is a
factor of approximately p in Stern’s pℓ bottleneck.



Chapter 6

Information-set decoding over Fq

Several articles have suggested to use base fields other than F2 for the McEliece
cryptosystem, e.g. [JM96], [BL05], and more recently [BCGO09] and [MB09]. This
idea is interesting as it has the potential to reduce the public-key size. The analysis in
Section 5.2 showed that in order to achieve 128-bit security the McEliece private key
should be a binary Goppa code of length 2960 and dimension 2288 with a degree-56
Goppa polynomial and 57 added errors. Using an equal-size code over Fq would save
a factor of log2 q: row and column dimension of the generator matrix both shrink
by a factor of log2 q at the cost of the matrix entries having size log2 q. However,
information-set-decoding algorithms do not scale purely with the code size. It is
important to understand the implications of changing from F2 to Fq for arbitrary
prime powers q on the attacks. Note that [FOPT10] and [GL10] claim structural
attacks against [MB09] but they assume that the codes are dyadic and do not attack
the general principle of using larger base fields.
This chapter generalizes Lee–Brickell’s algorithm and Stern’s algorithm to decod-
ing algorithms for codes over arbitrary fields and extends the improvements from
[BLP08] and [FS09] which were described in Chapter 5 of this thesis. This chapter
gives a precise analysis of these improved and generalized algorithms. For q = 31,
Goppa code parameters (length n, dimension k, and degree t of the Goppa polyno-
mial) are presented that require 2128 bit operations to compute the closest codeword,
i.e., to break McEliece’s system using a code of the form Γ31(a1, . . . , an, g).
The results presented in this chapter appeared in [Pet10]. The main differences
between the content of this chapter and [Pet10] are the following.

• The descriptions and analyses of the generalized Stern algorithm with classical
split and the generalized Stern algorithm with birthday speedup (Sections
3,4,6,7 in [Pet10]) are merged.

• Speedups for the first step of the generalized Stern algorithm are only briefly
mentioned as they were discussed in Chapter 5 and also due to their minor
impact on performance.

• Section 6.2.3 discusses potential speedups for the “list-building step” in the
generalized Stern algorithm.

• Section 6.3 describes the results of the experiments with the MPFI implemen-
tation of the Markov-chain iteration count. Moreover, key sizes for a 128-bit
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secure McEliece cryptosystem with Goppa codes over fields other than binary
fields are investigated. The discussion of key sizes for CCA2-secure variants
of the McEliece cryptosystem is taken from [BLP11] which is joint work with
Bernstein and Lange.

6.1 Generalization of information-set decoding

Chapter 5 showed that Stern’s algorithm is more efficient and supersedes the Lee–
Brickell algorithm but the latter is easier to understand and the generalization of it
can be used as a stepping stone to the generalization of Stern’s.
The algorithms in this chapter get as input a ciphertext y in Fnq , an error weight
w ≥ 0, and a generator matrix G of a q-ary linear code C of length n and dimension
k with unknown structure. The closest codeword c in C has distance w from y.

6.1.1 The generalized Lee–Brickell algorithm

Let p be an integer with 0 ≤ p ≤ w. The generalization of the Lee–Brickell algorithm
allows p errors in positions indexed by the information set similarly to the binary
case. The p errors can be corrected by finding the p weighted rows of G corresponding
to error indices in I. We keep the notation as in Section 5.1.1: the restriction of the
generator matrix G to the columns indexed by an information set I is denoted by
GI and the unique row of G−1

I G where the column indexed by some a ∈ I has a 1
is denoted by Ga.
The generalized Lee–Brickell algorithm changes as follows: replace Step 3 in Algo-
rithm 5.1 by the following step.

3: For each size-p subset A = {a1, . . . , ap} ⊂ I and for each m = (m1, . . . , mp)
in (F∗

q)
p: compute e = y −∑p

i=1miGai . If e has weight w then return e.
Else go back to Step 1.

Remark 6.1. If p = 0 Step 3 only consists of checking whether y − yIG−1
I G has

weight w. If p > 0 the loop requires going through all possible weighted sums of p
rows of G which need to be subtracted from y − yIG−1

I G in order to make up for
the p errors permitted in I. Section 6.2 explains how to generate all vectors needed
using exactly one row addition for each combination.

The parameter p is chosen to be a small number to keep the number of size-p subsets
small in Step 3.

6.1.2 The generalized Stern algorithm

Recall that Stern’s algorithm was originally designed to look for a codeword of a
given weight in a binary linear code.
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The generalized Stern algorithm uses a generator matrix instead of a parity-check
matrix. At the beginning an information set I is chosen. Then the algorithm tries
to build the weight-w vector e with y − e ∈ C by subtracting weighted rows of
the systematic generator matrix G−1

I G of y in order to correct 2p errors which are
assumed to lie in I. The algorithm finds e if an information set I together with sets
X , Y , and Z can be found such that e has weights p, p, 0 on the positions indexed
by X , Y , and Z, respectively. This is done by testing for collisions on ℓ positions
outside the information set: the candidates for collisions are sums of p weighted
rows of G and vectors generated by subtracting p weighted rows from y − G−1

I G,
all restricted to ℓ positions. Each collision vector has by construction weight 0 on ℓ
positions and weight 2p on positions indexed by I; if it has weight w in total it is
the desired error vector.

The algorithm has two integer parameters: a parameter p with 0 ≤ p ≤ w and ℓ
with 0 ≤ ℓ ≤ n− k. For the sake of simplicity assume that k is even. The algorithm
consists of a series of independent iterations, each iteration making random choices.
If the set I chosen in Step 1 does not lead to a weight-w word in Step 10 another
iteration has to be performed. Each iteration consists of the steps described in
Algorithm 6.1.

Algorithm 6.1: Generalized Stern algorithm

Input: A generator matrix G ∈ Fk×n2 for a q-ary linear code C, a vector
y ∈ Fnq , and an integer w ≥ 0.

Output: A weight-w element e ∈ Fnq with y − e ∈ C if such e exists.

1: Choose an information set I. Compute G−1
I G and replace y by y − yIG−1

I G.
2: Select a uniform random size-⌊k/2⌋ subset X ⊂ I.
3: Define Y = I \X .
4: Select a size-ℓ subset Z of {1, . . . , n} \ I.
5: For each uniform random size-p subset A = {a1, . . . , ap} ⊂ X and for each
m = (m1, . . . , mp) ∈ (F∗

q)
p: consider the p rows ri = miGai and compute

φm(A) = y −∑i ri restricted to ℓ columns indexed by Z.
6: For each uniform random size-p subset B = {b1, . . . , bp} ⊂ Y and for each
m′ = (m′

1, . . . , m
′
p) ∈ (F∗

q)
p: consider the p rows r′j = m′

jGbj and compute
ψm′(B) =

∑

j r
′
j restricted to ℓ columns indexed by Z.

7: For each pair (A,B) and coefficient vectors m,m′ where there is a pair of
colliding vectors φm(A) = ψm′(B)

8: Compute e = y − (
∑

imiGai +
∑

jm
′
jGbj ).

9: If e has weight w then return e.
10: Go back to Step 1.

For q = 2 and y = 0 this is Stern’s algorithm using the generator matrix of a linear
code.

Remark 6.2. The “birthday speedup” which was discussed in Section 5.3.2 can
easily be adapted to work for the generalized Stern algorithm: in Algorithm 6.1
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remove Steps 2–3, and replace Steps 5–6 by the following two steps.

5: Repeat N times: choose a uniform random size-p set A = {a1, . . . , ap} ⊆ I
and consider for each m = (m1, . . . , mp) ∈ (F∗

q)
p: the p rows ri = miGai and

compute φm(A) = y −
∑

i ri restricted to ℓ columns indexed by Z.
6: Repeat N times: choose a uniform random size-p set B = {b1, . . . , bp} ⊆ I

and consider for each m′ = (m′
1, . . . , m

′
p) ∈ (F∗

q)
p: the p rows r′j = m′

jGbj and
compute ψm′(B) =

∑

j r
′
j restricted to ℓ columns indexed by Z.

Note that Steps 1, 4, and 7–10 stay the same.

In the following whenever I is split into two disjoint sets X and Y as in the original
version then N equals

(
k/2
p

)
. If one uses the birthday speedup then N is another algo-

rithm parameter which needs to be optimized. A rough estimate is N ≈
(
k
p

)/√(
2p
p

)

as explained in Section 5.3.2.

6.2 Fast generalized Stern algorithm

This section analyzes the cost for the generalization of Stern’s algorithm as presented
in Section 6.1.2. The analysis takes the techniques from [BLP08] for the binary case
into account which were discussed in Section 5.2. First, the cost of the algorithm of
linear codes over prime fields is discussed, then the cost for extension fields.

6.2.1 Analysis for prime fields

Let G be the generator matrix of a linear code over Fq where q is prime. As in the
binary case the algorithm consists of basically three steps: “updating the matrix G
with respect to a new information set I”, “list building”, and “collision handling.”

Remark 6.3 (Reusing additions). The “list-building step” computes N(q−1)p vec-
tors y −

∑p
i=1miGai on ℓ positions coming from size-p subsets A in X . Computing

those vectors naively one by one would require pℓ multiplications and pℓ additions
in Fq per vector.
Instead, compute each sum

∑p
i=1miGai using intermediate sums; this takes about

one row operation per sum (compare to Section 5.2.2). Note that the sums in Step 5
additionally involve adding y. The naive approach is to subtract each

∑

imiGai

from y. Recall that for i ∈ I the vector Gi is the unique row of G−1
I G where the

column indexed by i has a 1. Here we need to distinguish two cases. If the sets X
and Y are disjoint, both of size k/2, then each combination y −

∑

imiGai includes
at least one vector y −Gi for k/2− p+ 1 rows Gi with i ∈ X . So, it is sufficient to
carry out only k/2 − p + 1 additions for y. If we use the “birthday speedup” then
we can build all possible vectors with indices in X and Y at the same time. We can
start by first computing k − p+ 1 vectors y −Gi with i ∈ I.
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Remark 6.4 (Fast collision handling). The expected number of colliding vectors
φm(A), ψm′(B) in Step 7 is about N2(q−1)2p/qℓ, under the assumption that all vec-
tors φm(A), ψm′(B) are uniformly distributed among all qℓ possible values. For each
collision one computes y minus the sum of 2p weighted rows on all positions outside I
and Z. Naive computation of one such a vector would take 2p multiplications and 2p
additions on n−k− ℓ positions. However, first of all one can discard multiplications
by 1, leaving 2p additions and (2p)(q − 2)/(q − 1) multiplications. Looking more
carefully one observes that each entry has a chance of (q − 1)/q of being a nonzero
entry. In order to save operations, one computes the result in a column-by-column
fashion and uses an early abort: after about (q/(q − 1))(w − 2p + 1) columns are
handled it is very likely that the resulting row vector has more than the allowed
w−2p nonzero entries and can be discarded. This means that partial collisions that
do not lead to a full collision consume only (q/(q − 1))(w − 2p+ 1) operations.
If y is the all-zero codeword the algorithm looks for a weight-w codeword. Then the
cost for adding y to weighted rows Ga coming from sets A can be neglected.

Remark 6.5 (Reusing existing pivots). Section 4 in [Pet10] contains a detailed
analysis of all techniques in Section 5.2.1 to speed up Gaussian elimination for the
q-ary case; only the trick of choosing multiple sets Z of size ℓ is omitted. Also here
we leave out the details since they do not differ from the binary case. Note that
the idea of reusing all but c entries of the previous information set (see 5.7) proves
useful for small fields since in this case only c new columns have to be pivoted at
the beginning of each iteration.

However, Gaussian elimination is even less of a bottleneck than in binary fields. For
large fields the cost for Step 1 compared to “list building” and “collision handling”
turns out to be negligible. We assume that each iteration chooses a new information
set. So, we crudely estimate the cost and assume Gaussian elimination to take
(n− k)2(n + k) operations in Fq.

Remark 6.6. The choice of the field does not influence the success probability of
one iteration of the algorithm since all possible weights in F∗

q are tested. Without
birthday trick the probability equals STPr(n, k, w, ℓ, p) which was defined in Sec-
tion 5.2.3. The analysis of the birthday-speedup success probability is the same as
in Remark 5.23.

Remark 6.7 (Number of iterations). If each iteration chooses a new information
set uniformly at random then the iterations are independent. The expected number
of iterations is the reciprocal of the success probability of the first iteration, which
is given by STPr(n, k, w, ℓ, p).
Reusing all but c elements of the previous information set results in dependent
iterations. The expected number of iterations can be computed using the same
Markov chain as in Section 5.2.3; see also Section 6.3.1.

Remark 6.8 (Cost measure). To estimate the cost per iteration we need to express
the cost in one measure, namely in additions in Fq. We described Steps 5–7 using
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multiplications. Since we consider only quite small fields Fq multiplications can be
implemented as table lookups and thus cost the same as one addition.

Remark 6.9 (Cost for one iteration of Stern’s algorithm). The cost of one iteration
of Algorithm 6.1 is as follows:

(n− k)2(n+ k) + ((κ− p+ 1) + 2N(q − 1)p) ℓ

+
q

q − 1
(w − 2p+ 1)2p

(

1 +
q − 2

q − 1

)
N2(q − 1)2p

qℓ
,

where κ = k/2 and N =
(
k/2
p

)
if I is split into disjoint sets of size k/2. If one uses

the birthday speedup then κ = k and N is another algorithm parameter which needs
to be optimized as discussed in Section 5.3.2.

Remark 6.10 (Choice of parameters for Stern’s algorithm). The parameter p is
chosen quite small in order to minimize the cost of going though all subsets A, B of
X and Y . The parameter ℓ is chosen to balance the number of all possible length-ℓ
vectors φm(A) and ψm′(B) with the number of expected collisions on ℓ positions.
A reasonable choice is ℓ = logq N + p logq(q − 1).

6.2.2 Analysis for extension fields

We presented a generalization for information-set decoding over arbitrary finite fields
Fq. However, the cost analysis in the previous section was restricted to prime values
of q. Here we point out the differences in handling arbitrary finite fields.
The main difference in handling arbitrary finite fields is in Steps 5–6 of the general-
ized Stern algorithm when computing sums of p rows coming from subsets A of X
and sums of p rows coming from subsets B of Y . In prime fields all elements are
reached by repeated addition since 1 generates the additive group. If q is a prime
power 1 does not generate the additive group.
Let Fq be represented over its prime field via a sparse irreducible polynomial h(x).
To reach all elements we also need to compute x times a field element, which is
essentially the cost of reducing modulo h. In turn this means several additions of
the prime field elements. Even though these operations technically are not additions
in Fq, the costs are essentially the same. This means that the costs of these steps
are the same as before.
In the analysis of Step 7 we need to account for multiplications with the coefficient
vectors (m1, . . . , mp) and (m′

1, . . . , m
′
p). This is the same problem that we faced

in the previous section and thus we use the same assumption, namely that one
multiplication in Fq has about the same cost as one addition in Fq.

6.2.3 Discussion

Note that generating all possible p-sums in the “list-building step” generates an
overhead. Similarly, Step 3 in the generalized Lee–Brickell algorithm goes through
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more vectors than needed. In particular, there are many linearly dependent vectors
in Fℓq which can be built as sums of p weighted rows Ga restricted to ℓ positions.
Minder and Sinclair in [MS10] present a generalization of Wagner’s generalized-
birthday algorithm [Wag02a] (see also Chapter 9) which constructs sums of elements
in a vector space over some arbitrary field Fr. Minder and Sinclair say that their
version “suffers at most only a factor 4 increase in space and a factor

√
r in time

compared to the binary version.” We briefly comment how the technique proposed
by Minder and Sinclair in [MS10, Section 5.4] can be adapted to our generalization
of Lee–Brickell’s and Stern’s algorithm and discuss its uses. Note that other than
Minder and Sinclair we use q instead of r to denote the field size.

Remark 6.11. Minder and Sinclair propose to generate only normalized vectors
which in our case are sums of p rows; “normalized” means that the first entry of
each sum of p rows is 1. This is done by first computing the sum v of p rows and
then multiplying by the inverse of the first entry of v. We question that one can
produce those sums efficiently. Also note that, in the collision-handling step, one
still has to find the right multiple of each collision vector in order to produce an
error vector having weight w − 2p on the remaining n − k − ℓ positions. In theory
the Minder–Sinclair idea could save a factor of

√
q − 1 since both lists coming from

indices in X and Y contain vectors in Fℓq having one entry fixed to 1. We comment
that using intermediate sums each p-sum costs only one addition in Fℓq anyway.
Also no inversions are needed here. Of course, for small fields inversions also could
be implemented as table lookups. One could try to build the first combinations
of p sums in the Minder–Sinclair version using intermediate sums. However, this
is not likely to gain a lot in practice; the speedup for “list building” described in
Remarks 5.10 and 6.3 achieves the cost of almost one addition per sum in Fℓq only
because of the abundance of vectors which need to be generated. For small fields
the idea does not have much impact on the overall cost. For larger q it has even
less potential as the cost for “list building” and “collision handling” increases. We
therefore stick to the method of generating more vectors than needed.

The Minder–Sinclair idea was claimed by [NCBB10] to save a factor of
√
q − 1 for

q-ary information-set decoding. But as many other points in [NCBB10] the idea was
not carefully analyzed by a proper operation count.

6.3 Parameters

This section proposes new parameters for the McEliece cryptosystem using Goppa
codes Γq(a1, . . . , an, g) over Fq. Recall that for q > 2 the error-correcting capability
of Γq(a1, . . . , an, g) is only (deg g)/2. See, however, Chapter 7 for a new special class
of Goppa codes which allow correction of more errors.
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6.3.1 MPFI implementation

We adapted the Markov chain implementation from [BLP08] to look for parameters
for the McEliece cryptosystem using codes over arbitrary fields Fq. The implemen-
tation computes the cost of Algorithm 6.1 including all improvements discussed in
Section 6.2.1, in particular, the reusing of existing pivots; see Remark 6.5.

We took the parameters proposed in [BCGO09] and [MB09], respectively, and in-
vestigated their security against our attack. The code can be found at http://www.
win.tue.nl/~cpeters/isdfq.html.

Note that some instances of the setups in [BCGO09] and [MB09] are broken by the
structural attacks in [FOPT10] and [GL10]. Our analysis showed how crude many
of the original security estimates against non-structural attacks are. The results are
summarized in Table 6.1.

6.3.2 Codes for 128-bit security

The public key in Kobara and Imai’s CCA2-secure variant [KI01] of the McEliece
cryptosystem can be stored in systematic form as (n− k)k entries in Fq. The same
is true for the Niederreiter variant; see, e.g., [OS08, Algorithm 2.3]. The simplest
representation of an element of Fq takes ⌈log2 q⌉ bits (e.g., 3 bits for q = 5), but
a sequence of elements can be compressed: one stores a batch of b elements of Fq
in
⌈
log2 q

b
⌉
bits, at the expense of some easy computation to recover the individual

elements. As b grows the storage per field element drops to approximately log2 q
bits, so (n− k)k elements can be stored using about ⌈(n− k)k log2 q⌉ bits.
We carried out experiments to find small key sizes for a 128-bit secure McEliece setup
using Goppa codes over non-binary fields. These experiments estimate the cost
of Algorithm 6.1 for decrypting a McEliece ciphertext using the operation count
summarized in Remark 6.9. For finite-fields sizes 2 ≤ q ≤ 32 the code length
n, and the degree t for the Goppa polynomial need to be chosen. Then k is set to
n−
⌈
logq n

⌉
t. The parameter t determines the public error weight w. We distinguish

two cases: if q = 2 Patterson’s algorithm can correct w = t errors whereas if q > 2
only (t+ 1)/2 errors can be corrected.

Figure 6.1 shows the graph of the resulting key sizes ⌈(n− k)k log2 q⌉ for 3 ≤ q ≤ 32
compared to the key size we get when using a binary Goppa code. Note that
we recomputed the binary case to find 128-bit secure binary McEliece parameters
(n, k, t) = (3009, 2325, 57) such that classical decoding (and not list decoding as for
the [2960, 2288] code in Remark 5.19) can be used.

Moreover, Figure 6.1 shows that Goppa codes over small fields of size 3, 4, 5, 7,
8, 9, 11 cannot compete with binary Goppa codes in terms of key size. However,
increasing the field size further yields astonishingly good results: we can halve the
key size when using a Goppa code over F31 instead of the binary [2960, 2288] code
mentioned above.

Our experiments with the MPFI implementation showed that a code of length n and
dimension k over F31 with n = 961, k = 771, and w = 48 introduced errors achieves

http://www.win.tue.nl/~cpeters/isdfq.html
http://www.win.tue.nl/~cpeters/isdfq.html


6.
In
form

ation
-set

d
eco

d
in
g
over

F
q

119

code parameters claimed disjoint split birthday trick

q n k w
security log2 log2 p ℓ c r

log2 log2 p ℓ c r µ
level bit ops #it bit ops #it

256 459 255 50 80 77.02 55.27 1 3 1 1 77.10 54.37 1 3 2 1 1.3
256 510 306 50 90 84.79 62.75 1 3 1 1 84.87 61.85 1 3 2 1 1.3
256 612 408 50 100 98.19 75.68 1 3 1 1 98.29 74.78 1 3 2 1 1.3
256 765 510 50 120 97.45 74.49 1 3 1 1 97.52 73.61 1 3 2 1 1.2
1024 450 225 56 80 76.84 53.26 1 3 1 1 76.88 52.37 1 3 2 1 1.3
1024 558 279 63 90 83.97 60.05 1 3 1 1 84.00 59.20 1 3 2 1 1.2
1024 744 372 54 110 73.65 48.71 1 3 2 1 70.54 44.90 1 3 3 1 1.3
4 2560 1536 128 128 181.86 154.41 2 15 4 4 187.46 153.71 2 10 10 5 0.6
16 1408 896 128 128 210.62 179.75 2 8 8 2 210.76 179.26 2 9 10 2 1.1
256 640 512 64 102 181.67 158.82 1 3 1 1 181.62 158.27 1 3 1 1 1.2
256 768 512 128 136 253.02 229.94 1 3 1 1 253.01 229.38 1 3 1 1 1.2
256 1024 512 256 168 329.00 305.55 1 3 1 1 329.04 305.09 1 3 1 1 1.1
2 2304 1281 64 80 83.56 59.17 2 21 8 8 83.39 58.66 2 22 9 9 0.9
2 3584 1537 128 112 112.31 87.69 2 24 8 8 112.18 87.12 2 26 8 8 1.0
2 4096 2048 128 128 136.48 111.10 2 25 8 8 136.47 110.50 2 26 9 9 1.0
2 7168 3073 256 192 216.07 180.45 3 37 32 8 215.91 179.44 3 38 36 9 1.0
2 8192 4097 256 256 265.16 228.23 3 38 16 8 265.01 227.23 3 39 17 9 1.0

Table 6.1: Cost of Algorithm 6.1 against the McEliece cryptosystem with codes using parameters proposed in [BCGO09]
(rows 1–7) and [MB09] (rows 8–17). The algorithm parameters p, ℓ are the well-known Stern parameters; parameters c and r
were discussed in Section 5.2.1 (note that c and r larger than 1 means that it makes sense to speed up Gaussian elimination).

If the birthday trick is used the number of subsets A is chosen to be µ ·
(
k
p

)(
2p
p

)− 1
2 where µ is a scaling factor. Similarly for

the number of subsets B.
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Figure 6.1: Decrease in key sizes when going to larger fields (128-bit security).
Horizontal axis is the field size q. The dashed line is the best key size achieved for
128-bit security when using a binary Goppa code. The solid line is the best key size
achieved for 128-bit security when using a q-ary Goppa code with classical decoding,
i.e., ⌊(t+ 1)/2⌋ added errors.

128-bit security. Using a Goppa code Γ = Γ31(a1, . . . , an, g) with distinct elements
a1, . . . , an in F312 and an irreducible polynomial g(x) in F312 [x] of degree 97; in this
case Γ is the subfield subcode of a code over F312 . A public key for such a [961, 771]
code over F31 would consist of k(n− k) log2 31 = 725741 bits.
A successful attack needs about 296.815 iterations with about 232.207 bit operations
per iteration. A good choice of parameters are p = 2, ℓ = 7, and c = 12. Using
the “birthday speedup” costs about the same, namely 2129.0290 bit operations. In
comparison to the classical disjoint split of the information set one can afford to
spend more time on Gaussian elimination and consider c = 17 new columns in each

iteration. Increasing the standard choice
(
k
p

)
/
√(

2p
p

)
of the number of subsets A and

B by a factor of 1.1 to N = 133300 yields the best result. The expected number of
iterations is 295.913, each taking about 233.116 bit operations.



Chapter 7

Wild McEliece

McEliece’s original system uses binary Goppa codes. Several smaller-key variants
have been proposed using other codes, such as Reed–Solomon codes [Nie86], gener-
alized Reed–Solomon codes [SS92], quasi-dyadic codes [MB09] or geometric Goppa
codes [JM96]. Unfortunately, many specific proposals turned out to be break-
able. The most confidence-inspiring proposal for code-based public-key cryptog-
raphy is still McEliece’s original proposal to use binary Goppa codes. For these only
information-set-decoding attacks apply. The best defense against this type of attack
is to use codes with a larger error-correcting capability. The disadvantage of binary
Goppa codes is that they have a comparably large key size. Chapter 6 discussed
how using Goppa codes over non-binary fields decreases the key size at the same
security level against information-set decoding. However, this effect appears only
with sufficiently big base fields such as F31; codes over F3 and F4 look worse than
those over F2. The main reason of F2 being better is that for binary Goppa codes
we can use Patterson’s decoding algorithm which corrects twice as many errors as
decoders for the non-binary case.

This chapter discusses the results of the article “Wild McEliece” [BLP11] which is
joint work with Bernstein and Lange. The article proposed using“wild Goppa codes”.
These are subfield codes over small Fq that have an increase in error-correcting
capability by a factor of about q/(q − 1). McEliece’s construction using binary
Goppa codes is the special case q = 2 of our construction.

These codes were analyzed in 1976 by Sugiyama, Kasahara, Hirasawa, and Namekawa
[SKHN76] but have not been used in code-based cryptography so far. This chapter
explains how to use these codes in the McEliece cryptosystem and how to correct
⌊qt/2⌋ errors where previous proposals corrected only ⌊(q − 1)t/2⌋ errors.
The main differences between the content of this chapter and [BLP11] are the fol-
lowing.

• The introduction to classical Goppa codes was moved to Chapter 4.

• The discussion of key sizes for CCA2-secure variants of the McEliece cryp-
tosystem was moved to Chapter 6.

121
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7.1 The wild McEliece cryptosystem

The reader is assumed to be familiar with Goppa codes, and in particular the nota-
tion introduced in Section 4.1.3.

7.1.1 Wild Goppa codes

The wild McEliece cryptosystem is set up as follows.

• We propose using the McEliece cryptosystem (or equivalently the Niederreiter
cryptosystem) with Goppa codes of the form Γq(a1, . . . , an, g

q−1) where g is an
irreducible monic polynomial in Fqm[x] of degree t. Note the exponent q−1 in
gq−1. We refer to these codes as wild Goppa codes for reasons explained later.

• We further propose to use error vectors of weight ⌊qt/2⌋. The advantage of wild
Goppa codes is that they allow us to efficiently correct ⌊qt/2⌋ errors (or slightly
more with the help of list decoding); see the next sections. For q ∈ {3, 4, . . .}
this is strikingly better than the performance of an irreducible polynomial of
the same degree (q − 1)t, namely correcting ⌊(q − 1)t/2⌋ errors. This change
does not hurt the code dimension: polynomials of the form gq−1 produce codes
of dimension at least n−m(q − 1)t (and usually exactly n−m(q − 1)t), just
like irreducible polynomials of degree (q − 1)t.

For q = 2 this proposal is not new: it is exactly McEliece’s original proposal to
use a binary Goppa code Γ2(a1, . . . , an, g), where g is an irreducible polynomial of
degree t, and to use error vectors of weight t. McEliece used Patterson’s algorithm
to efficiently decode t errors.
In Chapter 6 we considered Goppa codes over slightly larger fields. In particular,
switching from binary Goppa codes to codes of the form Γ31(a1, . . . , an, g) yields
good results as shown in Section 6.3.2.
What is new in the wild McEliece cryptosystem is the use of Goppa polynomials of
the form gq−1 for q ≥ 3, allowing us to correct more errors for the same field size,
the same code length, and the same code dimension.

7.1.2 Minimum distance of wild Goppa codes

The following theorem is the main theorem of the article [SKHN76] by Sugiyama,
Kasahara, Hirasawa, and Namekawa. What the theorem states is that, for any
monic squarefree polynomial g in Fqm [x], the code Γq(a1, . . . , an, g

q−1) is the same as
Γq(a1, . . . , an, g

q). The code therefore has minimum distance at least qt+1. Efficient
decoding of ⌊qt/2⌋ errors requires more effort and is discussed in the next section.
The case q = 2 of this theorem is due to Goppa, using a different proof that can
be found in many textbooks; for example, in [MS77, pp. 341–342]. The case q ≥ 3
has received less attention. We include a streamlined proof to keep this chapter
self-contained.
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The proof immediately generalizes from the pair (gq−1, gq) to the pair (grq−1, grq),
and to coprime products of such pairs. These generalizations also occur in [SKHN76].
Wirtz in [Wir88], and independently Katsman and Tsfasman in [KT89], further
generalized the results of [SKHN76] to geometric Goppa codes. See Janwa and
Moreno [JM96] for a discussion of the possibility of using geometric Goppa codes
in the McEliece cryptosystem but also Minder’s thesis [Min07] and the article by
Faure and Minder [FM08] for attacks on the elliptic-curve version and the genus-2
version. We do not consider this possibility further in this chapter.

Theorem 7.1. Let q be a prime power. Let m be a positive integer. Let n be an
integer with 1 ≤ n ≤ qm. Let a1, a2, . . . , an be distinct elements of Fqm. Let g
be a monic squarefree polynomial in Fqm[x] coprime to (x − a1) · · · (x − an). Then
Γq(a1, a2, . . . , an, g

q−1) = Γq(a1, a2, . . . , an, g
q).

Proof. If
∑

i ci/(x − ai) = 0 in Fqm[x]/g
q then certainly

∑

i ci/(x − ai) = 0 in
Fqm [x]/g

q−1.
Conversely, consider any (c1, c2, . . . , cn) ∈ Fnq such that

∑

i ci/(x − ai) = 0 in
Fqm [x]/g

q−1. Find an extension k of Fqm so that g splits into linear factors in k[x].
Then

∑

i ci/(x − ai) = 0 in k[x]/gq−1, so
∑

i ci/(x − ai) = 0 in k[x]/(x − r)q−1 for
each factor x− r of g. The elementary series expansion

1

x− ai
= − 1

ai − r
− x− r

(ai − r)2
− (x− r)2

(ai − r)3
− · · ·

then implies

∑

i

ci
ai − r

+ (x− r)
∑

i

ci
(ai − r)2

+ (x− r)2
∑

i

ci
(ai − r)3

+ · · · = 0

in k[x]/(x−r)q−1; i.e.,
∑

i ci/(ai−r) = 0,
∑

i ci/(ai−r)2 = 0, . . . ,
∑

i ci/(ai−r)q−1 =
0. Now take the qth power of the equation

∑

i ci/(ai− r) = 0, and use the fact that
ci ∈ Fq, to obtain

∑

i ci/(ai−r)q = 0. Work backwards to see that
∑

i ci/(x−ai) = 0
in k[x]/(x− r)q.
By hypothesis g is the product of its distinct linear factors x − r. Therefore gq is
the product of the coprime polynomials (x− r)q, and

∑

i ci/(x− ai) = 0 in k[x]/gq;
i.e.,

∑

i ci/(x− ai) = 0 in Fqm [x]/g
q.

Remark 7.2 (The “wild” terminology). To explain the name “wild Goppa codes”
we briefly review the standard concept of wild ramification. A prime p “ramifies”
in a number field L if the unique factorization pOL = Qe1

1 Q
e2
2 · · · has an exponent

ei larger than 1, where OL is the ring of integers of L and Q1, Q2, . . . are distinct
maximal ideals of OL. Each Qi with ei > 1 is “ramified over p”; this ramification is
“wild” if ei is divisible by p.
If OL/p has the form Fp[x]/f , where f is a monic polynomial in Fp[x], then the
maximal ideals Q1, Q2, . . . correspond naturally to the irreducible factors of f , and
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the exponents e1, e2, . . . correspond naturally to the exponents in the factorization
of f . In particular, the ramification corresponding to an irreducible factor of f is
wild if and only if the exponent is divisible by p.

Similar comments apply to more general extensions of global fields. Ramification
corresponding to an irreducible factor ϕ of a monic polynomial f in Fpm[x] is wild if
and only if the exponent is divisible by p, i.e., the local component of f is a power
of ϕp. We take the small step of referring to ϕp as being “wild”, and referring to the
corresponding Goppa codes as “wild Goppa codes”. Of course, if the Goppa code for
ϕp is wild, then the Goppa code for ϕp−1 must also be wild, since (by Theorem 7.1)
it is the same code.

The traditional concept of wild ramification is defined by the characteristic of the
base field. We find it more useful to allow a change of base from Fp to Fq, generalizing
the definition of wildness to use the size of Fq rather than just the characteristic of Fq.

7.2 Decrypting wild-McEliece ciphertexts

The main problem faced by a wild-McEliece receiver is to decode ⌊qt/2⌋ errors in
the code Γ = Γq(a1, . . . , an, g

q−1): i.e., to find a codeword c = (c1, . . . , cn) ∈ Γ, given
a received word y = (y1, . . . , yn) ∈ Fnq at Hamming distance ≤ ⌊qt/2⌋ from c. This
section presents an asymptotically fast algorithm that decodes up to ⌊qt/2⌋ errors,
and then a “list decoding” algorithm that decodes even more errors.

7.2.1 Classical decoding

Recall the representation of Γqm(a1, . . . , an, g) as a generalized Reed–Solomon code;
specifically the polynomial view of generalized Reed–Solomon codes summarized in
Remark 4.20. It follows from Theorem 7.1 that

Γ = Γq(a1, . . . , an, g
q)

⊆ Γqm(a1, . . . , an, g
q)

=

{(
f(a1)

h′(a1)
, . . . ,

f(an)

h′(an)

)

: f ∈ gqFqm [x], deg f < n

}

where h = (x−a1) · · · (x−an). We thus view the target codeword c = (c1, . . . , cn) ∈
Γ as a sequence (f(a1)/h

′(a1), . . . , f(an)/h
′(an)) of function values, where f is a

multiple of gq of degree below n. Recall that the norm |ψ| of a polynomial ψ ∈ Fqm [x]
is defined as qdegψ if ψ 6= 0 and 0 if ψ = 0.

We are given y, the same sequence with ⌊qt/2⌋ errors, or more generally with ≤
⌊qt/2⌋ errors. We first state the decoding algorithm for Γqm(a1, . . . , an, g

q) and then
show that it reconstructs c from y. We emphasize that the algorithm decodes the
bigger code Γqm(a1, . . . , an, g

q) as well as the wild Goppa code Γ = Γq(a1, . . . , an, g
q).
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Algorithm 7.1: Alternant decoder

Input: Given a code Γ = Γqm(a1, . . . , an, g
q), in particular, the polynomials

g(x) and h(x) = (x− a1) · · · (x− an) in Fqm[x], and a vector
y ∈ Fnqm at distance ⌊qt/2⌋ from a codeword c ∈ Γ.

Output: The codeword c ∈ Fnq .

1: Interpolate y1h
′(a1)/g(a1)

q, . . . , ynh
′(an)/g(an)

q into a polynomial ϕ: i.e.,
construct the unique ϕ ∈ Fqm [x] such that ϕ(ai) = yih

′(ai)/g(ai)
q and

deg ϕ < n.
2: Compute the continued fraction of ϕ/h to degree ⌊qt/2⌋: i.e., apply the

Euclidean algorithm to h and ϕ, stopping with the first remainder v0h− v1ϕ
of degree < n− ⌊qt/2⌋.

3: Compute f = (ϕ− v0h/v1)gq.
4: Return c = (f(a1)/h

′(a1), . . . , f(an)/h
′(an)).

This algorithm uses n1+o(1) operations in Fqm if multiplication, evaluation, interpo-
lation, and continued-fraction computation are carried out by standard FFT-based
subroutines; see [Ber08a] for a survey of those subroutines.

Remark 7.3 (Correctness of the algorithm). To see that this algorithm works,
observe that ϕ has many values in common with the target polynomial f/gq: specif-
ically, ϕ(ai)=f(ai)/g(ai)

q for all but ⌊qt/2⌋ values of i. In other words, the error-
locator polynomial

ǫ =
∏

i:
f(ai)

g(ai)
q 6=ϕ(ai)

(x− ai)

has degree at most ⌊qt/2⌋. The difference ϕ−f/gq is a multiple of h/ǫ, say δh/ǫ; i.e.,
δ/ǫ − ϕ/h = −(f/gq)/h. The idea is to construct δ and ǫ by examining continued
fractions of ϕ/h.
The difference δ/ǫ−ϕ/h = −(f/gq)/h has norm smaller than |1/xqt| and is therefore
smaller than 1/ǫ2, so δ/ǫ is a “best approximation” to ϕ/h, so δ/ǫ must appear as
a convergent to the continued fraction of ϕ/h, specifically the convergent at degree
⌊qt/2⌋. Consequently δ/ǫ = v0/v1; i.e., f/g

q = ϕ− v0h/v1.

More generally, one can use any Reed–Solomon decoder to reconstruct f/gq from
the values f(a1)/g(a1)

q, . . . , f(an)/g(an)
q with ⌊qt/2⌋ errors. This is an illustration

of the following sequence of standard transformations:

Reed–Solomon decoder⇒ generalized Reed–Solomon decoder

⇒ alternant decoder⇒ Goppa decoder.

The resulting decoder corrects ⌊(deg g)/2⌋ errors for Goppa codes Γq(a1, . . . , an, g);
in particular, ⌊q(deg g)/2⌋ errors for Γq(a1, . . . , an, g

q); and so ⌊q(deg g)/2⌋ errors
for Γq(a1, . . . , an, g

q−1), by Theorem 7.1.
We do not claim that the particular algorithm stated above is the fastest possible
decoder, and in particular we do not claim that it is quite as fast as Patterson’s
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algorithm [Pat75] for q = 2. However, it has essentially the same scalability in n
as Patterson’s algorithm, works for general q, and is obviously fast enough to be
usable.

An example implementation of a wild-Goppa-code decoder in the Sage computer-
algebra system [S+10] can be found at http://pqcrypto.org/users/christiane/
wild.html.

7.2.2 List decoding

By switching from a classical Reed–Solomon decoding algorithm to the Guruswami–
Sudan list-decoding algorithm [GS99] we can efficiently correct n −

√

n(n− qt) >
⌊qt/2⌋ errors in the function values f(a1)/g(a1)

q, . . . , f(an)/g(an)
q. This algorithm

is not as fast as a classical decoder but still takes polynomial time. Consequently
we can handle n−

√

n(n− qt) errors in the wild Goppa code Γq(a1, . . . , an, g
q−1).

This algorithm can, at least in theory, produce several possible codewords c. This
does not pose a problem for the CCA2-secure variants of the McEliece cryptosystem
introduced by Kobara and Imai in [KI01]: those variants automatically reject all
codewords that do not include proper labels cryptographically protected by an “all-
or-nothing transform”.

As above, we do not claim that this algorithm is the fastest possible decoder. In
particular, for q = 2 the same error-correcting capacity was obtained by Bernstein in
[Ber08b] using a more complicated algorithm, analogous to Patterson’s algorithm;
we do not claim that the Γ(a1, . . . , an, g

2) approach is as fast as that algorithm.

With more decoding effort we can handle a few additional errors by the standard idea
of combinatorially guessing those errors. Each additional error produces a noticeable
reduction of key size, as will be shown in Section 7.4. In many applications, the
McEliece decoding time is unnoticeable while the McEliece key size is a problem, so
allowing extra errors at the expense of decoding time is a good tradeoff.

7.3 Attacks

This section discusses several attacks against the wild McEliece cryptosystem. All
of the attacks scale poorly to large key sizes; Section 7.4 presents parameters that
are safe against all of these attacks. We do not claim novelty for any of the attack
ideas.
We emphasize that the wild McEliece cryptosystem includes, as a special case, the
original McEliece cryptosystem. A complete break of the wild McEliece cryptosys-
tem would therefore imply a complete break of the original McEliece cryptosystem,
a system that has survived scrutiny for 32 years. It is of course possible that there
is a magical dividing line between q = 2 and q = 3, an attack that breaks every new
case of our proposal while leaving the original cryptosystem untouched, but we have
not found any such line.
We focus on inversion attacks, i.e., attacks against the one-wayness of wild McEliece

http://pqcrypto.org/users/christiane/wild.html
http://pqcrypto.org/users/christiane/wild.html
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encryption. There are several well-known chosen-ciphertext attacks that break se-
mantic security without breaking one-wayness, but all of these attacks are stopped
by standard conversions; see [KI01].

7.3.1 Generic decoding methods

The top threat against the original McEliece cryptosystem, the attack algorithm
that has always dictated key-size recommendations, is information-set decoding; as
a generic decoding method information-set decoding does not rely on any particular
code structure. The same attack also appears to be the top threat against the wild
McEliece cryptosystem for F3, F4, etc.

The exact complexity of information-set decoding is not easy to state concisely. We
rely on, and refer the reader to, the analysis of state-of-the-art Fq information-set
decoding from [Pet10] presented in Chapter 6. To find the parameters in Section 7.4
we searched various (n, k, t) and applied the complexity formulas from Chapter 6 to
evaluate the security level of each (n, k, t).

Wagner’s “generalized birthday attacks” [Wag02b] can also be used as a generic
decoding method. The Courtois–Finiasz–Sendrier signature system [CFS01] was
attacked by Bleichenbacher using this method. However, information-set decod-
ing is always more efficient than generalized birthday attacks as an attack against
code-based encryption. See [FS09] for further discussion; the analysis is essentially
independent of q.

7.3.2 Structural and algebraic attacks

The following method aims at detecting the hidden Goppa code in the wild McEliece
cryptosystem.

Remark 7.4 (Polynomial-searching attacks). There are approximately qmt/t monic
irreducible polynomials g of degree t in Fqm[x], and therefore approximately qmt/t
choices of gq−1. One can marginally expand the space of polynomials by considering
more general squarefree polynomials g, but we focus on irreducible polynomials to
avoid any unnecessary security questions.

An attacker can try to guess the Goppa polynomial gq−1 and then apply Sendrier’s
“support-splitting algorithm” [Sen00] to compute the support (a1, . . . , an). We com-
bine two defenses against this attack:

• We keep qmt/t extremely large, so that guessing gq−1 has negligible chance
of success. Parameters with qmt/t smaller than 2128 are marked with the
international biohazard symbol h in Section 7.4.

• We keep n noticeably lower than qm, so that there are many possible subsets
{a1, . . . , an} of Fqm . The support-splitting algorithm takes {a1, . . . , an} as an
input along with g.
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The second defense is unusual: it is traditional, although not universal, to take
n = 2m and q = 2, so that the only possible set {a1, . . . , an} is F2m . The strength
of the second defense is unclear: we might be the first to ask whether the support-
splitting idea can be generalized to handle many sets {a1, . . . , an} simultaneously,
and we would not be surprised if the answer turns out to be yes. However, the first
defense is well known for q = 2 and appears to be strong.

The second attack is an algebraic attack. In a recent article [FOPT10], Faugére, Ot-
mani, Perret, and Tillich broke many (but not all) of the “quasi-cyclic” and “quasi-
dyadic”variants of the McEliece cryptosystem that had been proposed in the articles
[BCGO09] and [MB09] in 2009. Gauthier Umana and Leander in [GL10] indepen-
dently broke some of the same systems.
These variants have highly regular support structures allowing very short public
keys. The attacks set up systems of low-degree algebraic equations for the code
support, taking advantage of the fact that there are not many variables in the
support.
The article [FOPT10] indicates that the same attack strategy is of no use against
the original McEliece cryptosystem because there are “much more unknowns” than
in the broken proposals: for example, 1024 variables in F1024, totalling 10240 bits.
Our recommended parameters also have very large supports, with no particular
structure, so algebraic attacks do not appear to pose any threat.

7.4 Parameters

Table 7.1 gives parameters (n, k, t) for the McEliece cryptosystem using a code
Γ = Γq(a1, . . . , an, g

q−1) that provides 128-bit security against our attack presented
in Chapter 6. We chose the code length n, the degree t of g and the dimension
k = n −

⌈
logq n

⌉
t(q − 1) of Γ to minimize the key size ⌈(n− k)k log2 q⌉ for 128-bit

security when w errors are added. We compare four cases:

• w = ⌊(q − 1)t/2⌋ added errors using classical decoding techniques,

• w = ⌊qt/2⌋ added errors using Theorem 7.1,

• w = ⌊qt/2⌋ + 1 added errors, and

• w = ⌊qt/2⌋ + 2 added errors,

where the last two cases use Theorem 7.1 together with list decoding as in Section 7.2.
See Figure 7.1 for a graph of the resulting key sizes; also compare it to Figure 6.1
in Section 6.3.2.
Section 5.2.5 proposed to use a Goppa code Γ2(a1, . . . , an, g) with length 2960, di-
mension 2288, and g of degree t = 56 for 128-bit security when 57 errors are added
by the sender. A key in this setting has 1537536 bits. This is consistent with our
table entry for q = 2 with w = ⌊qt/2⌋ + 1 added errors.



7. Wild McEliece 129

 0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

 2  3  4  5  7  8  9  11  13  16 17  19  23  25  27  29  31 32

ke
y 

bi
ts

q

(q-1)t/2
qt/2

qt/2+1
qt/2+2

Figure 7.1: Decrease in key sizes when correcting more errors (128-bit security).
Horizontal axis is the field size q. Graphs from top to bottom show the best key size
when ⌊(q − 1)t/2⌋ errors are added; ⌊qt/2⌋ errors are added; ⌊qt/2⌋ + 1 errors are
added; ⌊qt/2⌋+ 2 errors are added. See Table 7.1.

Small q’s larger than 2 provide astonishingly good results. For larger q’s one has to be
careful: parameters optimized against information-set decoding have qmt/t dropping
as q grows, reducing the number of suitable polynomials g in Fqm[x] significantly.
For example, there are only about 228 monic irreducible polynomials g of degree 3
over F312 [x], while there are about 2

227 monic irreducible polynomials g of degree 20
in F55 [x]. The smallest q for which the g possibilities can be enumerated in less time
than information-set decoding is q = 11: the parameters (n, k, t) = (1199, 899, 10)

satisfy q⌈logq n⌉t/t ≈ 2100, so there are about 2100 monic irreducible polynomials g in
F113 [x] of degree t = 10. This is one of the cases marked by h in Table 7.1. The
security of these cases depends on the strength of the second defense discussed in
Section 7.3.
The h symbol is omitted from the ⌊(q − 1)t/2⌋ column because relatively low error-
correcting capability and relatively high key size can be achieved by non-wild codes
with many more choices of g.
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Table 7.1: Decrease in key sizes when correcting more errors (128-bit security). Each
entry in the first column states q. Each entry in the subsequent columns states key
size, (n, k, t) and the number of errors.

q ⌊(q − 1)t/2⌋ ⌊qt/2⌋ ⌊qt/2⌋ + 1 ⌊qt/2⌋ + 2

2 —
1590300 bits: 1533840 bits: 1477008 bits:

(3009, 2325, 57) (2984, 2324, 55) (2991, 2367, 52)
57 errors 56 errors 54 errors

3
4331386 bits: 1493796 bits: 1439876 bits: 1385511 bits:

(3946, 3050, 56) (2146, 1530, 44) (2133, 1545, 42) (2121, 1561, 40)
56 errors 66 errors 64 errors 62 errors

4
3012336 bits: 1691424 bits: 1630044 bits: 1568700 bits:

(2886, 2202, 38) (2182, 1678, 28) (2163, 1677, 27) (2193, 1743, 25)
errors 57 errors 56 55 errors 52 errors

5
2386014 bits: 1523278 bits: 1468109 bits: 1410804 bits:

(2395, 1835, 28) (1931, 1491, 22) (1877, 1437, 22) (1919, 1519, 20)
56 errors 55 errors 56 errors 52 errors

7
1806298 bits: 1319502 bits: 1273147 bits: 1223423 bits:

(1867, 1411, 19) (1608, 1224, 16) (1565, 1181, 16) (1633, 1297, 14)
57 errors 56 errors 57 errors 51 errors

8
1924608 bits: 1467648 bits: 1414140 bits: 1359540 bits:

(1880, 1432, 16) (1640, 1248, 14) (1659, 1295, 13) (1609, 1245, 13)
56 errors 56 errors 53 errors 54 errors

9
2027941 bits: 1597034 bits: 1537389 bits: 1481395 bits:

(1876, 1428, 14) (1696, 1312, 12) (1647, 1263, 12) (1601, 1217, 12)
56 errors 54 errors 55 errors 56 errors

11
1258265 bits: 1004619 bits: 968295 bits: 933009 bits:
(1286, 866, 14) (1268, 968, 10)h (1233, 933, 10)h (1199, 899, 10)h

70 errors 55 errors 56 errors 57 errors

13
1300853 bits: 1104093 bits: 1060399 bits: 1018835 bits:
(1409, 1085, 9) (1324, 1036, 8)h (1283, 995, 8)h (1244, 956, 8)h

54 errors 52 errors 53 errors 54 errors

16
1404000 bits: 1223460 bits: 1179360 bits: 1129680 bits:
(1335, 975, 8) (1286, 971, 7)h (1251, 936, 7)h (1316, 1046, 6)h

60 errors 56 errors 57 errors 50 errors

17
1424203 bits: 1260770 bits: 1208974 bits: 1160709 bits:
(1373, 1037, 7) (1359, 1071, 6)h (1315, 1027, 6)h (1274, 986, 6)h

56 errors 51 errors 52 errors 53 errors

19
1472672 bits: 1318523 bits: 1274481 bits: 1231815 bits:
(1394, 1070, 6) (1282, 958, 6)h (1250, 926, 6)h (1219, 895, 6)h

54 errors 57 errors 58 errors 59 errors

Continued on next page
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Table 7.1 – continued from previous page
q ⌊(q − 1)t/2⌋ ⌊qt/2⌋ ⌊qt/2⌋ + 1 ⌊qt/2⌋ + 2

23
1553980 bits: 1442619 bits: 1373354 bits: 1310060 bits:
(1371, 1041, 5) (1472, 1208, 4)h (1414, 1150, 4)h (1361, 1097, 4)h

55 errors 46 errors 47 errors 48 errors

25
1599902 bits: 1465824 bits: 1405640 bits: 1349468 bits:
(1317, 957, 5) (1384, 1096, 4)h (1339, 1051, 4)h (1297, 1009, 4)h

60 errors 50 errors 51 errors 52 errors

27
1624460 bits: 1502811 bits: 1446437 bits: 1395997 bits:
(1407, 1095, 4) (1325, 1013, 4)h (1287, 975, 4)h (1253, 941, 4)h

52 errors 54 errors 55 errors 56 errors

29
1656766 bits: 699161 bits: 681478 bits: 617003 bits:
(1351, 1015, 4) (794, 514, 5)h (781, 501, 5)h (791, 567, 4)h

56 errors 72 errors 73 errors 60 errors

31
726484 bits: 681302 bits: 659899 bits: 634930 bits:
(851, 611, 4) (813, 573, 4)h (795, 555, 4)h (892, 712, 3)h
60 errors 62 errors 63 errors 48 errors

32
735320 bits: 685410 bits: 654720 bits: 624960 bits:
(841, 593, 4) (923, 737, 3)h (890, 704, 3)h (858, 672, 3)h
62 errors 48 errors 49 errors 50 errors
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Chapter 8

Ball-collision decoding

The generic decoding algorithms described in Chapter 5 take exponential time for
any constant asymptotic code rate R and constant asymptotic error fraction W :
i.e., time 2(α(R,W )+o(1))n for some positive real number α(R,W ) if k/n → R and
w/n→ W as n→∞. As before, n denotes the code length, k the code dimension,
and w the number of errors. Section 5.4 introduced α(R,W ) and in particular how
o(1) looks like in the case of information-set decoding as described by Lee–Brickell
and Stern.

The attack described in Section 5.2 established an upper bound on the optimal
decoding exponent α(R,W ). The upper bound is the exponent of Stern’s collision-
decoding algorithm 5.2. This upper bound arises from an asymptotic binomial-
coefficient optimization and does not have a simple formula, but it can be straight-
forwardly computed to high precision for any particular (R,W ). For example, for
W = 0.04 and R = 1 + W log2W + (1 − W ) log2(1 − W ) = 0.7577 . . ., Stern’s
algorithm shows that α(R,W ) ≤ 0.0809 . . ..

There have also been many polynomial-factor speedups in generic decoding algo-
rithms; there are dozens of articles on this topic, both inside and outside cryptog-
raphy. Here is an illustration of the cumulative impact of many of the speedups.
McEliece’s original parameter suggestions (“n = 1024, k = 524, t = 50”) take about
5243

(
1024
50

)
/
(
500
50

)
≈ 281 operations to break by the simple information-set-decoding at-

tack explained in McEliece’s original article [McE78, Section 3]. (McEliece estimated
the attack cost as 5243(1 − 50/1024)−524 ≈ 265; this underestimate was corrected
by Adams and Meijer in [AM87, Section 3].) The attack presented in Section 5.2,
thirty years after McEliece’s article, builds on several improvements and takes only
about 260.5 operations for the same parameters. This thesis also discussed more re-
cent improvements such as the bound in (5.1) and q-ary information-set decoding in
Chapter 6. However, most improvements give only polynomial factors which have no
relevance to the exponent α(R,W ) in 2(α(R,W )+o(1))n. The best known upper bound
on α(R,W ) has been unchanged since 1989.

This chapter presents smaller upper bounds on the decoding exponent α(R,W ).
Specifically, this chapter introduces a generic decoding algorithm and demonstrates
that this algorithm is, for every (R,W ), faster than Stern’s algorithm by a factor
exponential in n. This algorithm is called “ball-collision decoding” because of a
geometric interpretation explained in Section 8.1.1.

The change in the exponent is not very large— for example, this chapter uses ball-
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collision decoding to demonstrate that α(R,W ) ≤ 0.0807 . . . for the (R,W ) given
above—but it is the first exponential improvement in decoding complexity in more
than twenty years.
Constant rates R and constant error fractions W are traditional in the study of
coding-theory asymptotics. Note that they are not exactly right in the study of
code-based cryptography. Typical code-based cryptosystems limit the error fraction
W to (1 − R)/log2 n, so W decreases slowly to 0 as n → ∞. (In theory one could
replace the Goppa codes in the McEliece system with explicit “asymptotically good”
families of codes for which k/n and w/n converge to nonzero constants R and W ;
however, the security of these families has never been evaluated.) It seems reasonable
to conjecture that the best possible algorithms take time

(1− R)−(1−R)n/log2 n+(γ(R)+o(1))n/(log2 n)
2

if k/n→ R and w/(n/log2 n)→ 1−R as n→∞; this was discusses in Section 5.4.
Ball-collision decoding produces better upper bounds on γ(R) for the same reason
that it produces better upper bounds on α(R,W ). This chapter considers the two-
variable function α(R,W ) so that the results can be applied to a wider range of
choices of W and compared to a wider range of previous articles, including articles
that make the traditional coding-theory assumption R = 1 + W log2W + (1 −
W ) log2(1−W ).
This chapter also evaluates the exact cost of ball-collision decoding, using the same
bit-operation-counting rules as in the previous literature, and uses this evaluation
to illustrate the impact of ball-collision decoding upon cryptographic applications.
The results of this chapter are joint work with Bernstein and Lange and appeared
in [BLP10]. The main differences between the content of this chapter and [BLP10]
are the following.

• The ball-collision-decoding algorithm is presented in a simplified way compared
to [BLP10] in order to unify all information-set-decoding algorithms in this
thesis.

• The complexity analysis is shortened in comparison to Sections 3 and 5 in
[BLP10] as several methods have been used already in Chapter 5 and 6.

• This chapter omits the discussion of long-term cryptography given in Ap-
pendix A of [BLP10].

• Section 8.3 combines Section 7 and the Appendix C of [BLP10], giving the
asymptotic analysis of the cost of ball-collision decoding and the proof of its
asymptotic superiority to collision decoding.

8.1 The ball-collision algorithm

Given a parity-check matrixH and a syndrome s, Algorithm 8.1 looks for a weight-w
word e ∈ Fn2 such that Het = s.
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k n− k
Plain information-set decoding

0 w

Lee–Brickell
p w − p

λ n− k − λ
Leon

p 0 w − p
Stern

p p 0 w − 2p

Ball-collision decoding

p p q q w − 2p− 2q

Figure 8.1: Extension of Figure 5.2 to include ball-collision decoding. Note that
λ = λl+λr for ball-collision decoding and λ = ℓ for Leon’s algorithm and for Stern’s
algorithm.

8.1.1 The algorithm

This section presents the ball-collision decoding algorithm in a simplified way; the
next section discusses various optimizations.
Ball-collision decoding builds on collision decoding, i.e., Stern’s algorithm, which
searches for collisions between vectors in Fℓ2. Any such vector v ∈ Fℓ2 is the sum of p
columns of H restricted to ℓ rows. The idea of ball-collision decoding is to look for
collisions among vectors in Fℓ2 at distance q from such a vector v. These vectors lie
in the ball around v with radius q. The algorithm could easily be extended to search
for collisions between all elements within these balls. For simplicity the algorithm
is restricted to the vectors on the boundary.
Similar to collision decoding a randomly chosen information set I is divided into
two disjoint subsets X and Y . The ball-collision algorithm finds a weight-w vector
e with Het = s if an information set I together with sets X , Y , Zl, and Zr can be
found such that e has weights p, p, q, q on the positions indexed by X , Y , Zl, Zr,
respectively. Recall the visual comparison by Overbeck and Sendrier [OS08] of error
patterns in various information-set-decoding algorithms (Figure 5.2 in Section 5.1.1).
Figure 8.1 extends their picture to include ball-collision decoding. It shows that the
new algorithm allows errors in an interval that had to be error-free in Leon’s and
Stern’s algorithms.
For a visual interpretation of Algorithm 8.1 we refer the reader to Remark 8.1 and
in particular to Figure 8.2. The algorithm has a parameter p ∈ {0, 1, . . . , w}, a
parameter q ∈ {0, 1, . . . , w − 2p}, and parameters λl, λr ∈ {0, 1, . . . , n− k}. The al-
gorithm consists of a series of independent iterations, each iteration making random
choices. If the set I chosen in Step 1 does not lead to a weight-w word in Step 10
another iteration has to be performed. Each iteration consists of the steps described
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in Algorithm 8.1.

Algorithm 8.1: Ball-collision decoding

Input: An integer w ≥ 0, a column vector s ∈ Fn−k2 , and an (n− k)× n
parity-check matrix H ∈ F

(n−k)×n
2 .

Output: A weight-w element e ∈ Fn2 with Het = s.

1: Choose an information set I and bring H into systematic form with respect
to I: find an invertible U ∈ F

(n−k)×(n−k)
2 such the submatrix of UH indexed

by {1, . . . , n} \ I is the (n− k)× (n− k) identity matrix.
2: Select a uniform random size-⌊k/2⌋ subset X ⊂ I.
3: Define Y = I \X .
4: Select a size-λl subset Zl of {1, . . . , n} \ I.
5: Select a size-λr subset Zr of {1, . . . , n} \ (I ∪ Zl).
6: For each size-p subset A0 ⊆ X: compute φ(A0) = s+

∑

a0
(UH)a0 restricted

to the λl + λr rows indexed by Zl ∪ Zr. For each size-q subset A1 ⊆ Zl:
compute φ′(A0, A1) = s +

∑

i∈A0∪A1
(UH)i restricted to the λl + λr rows

indexed by Zl ∪ Zr; i.e., expand φ(A0) into a ball of radius q by computing
φ′(A0, A1) ∈ F

λl+λr
2 which is the sum of φ(A0) and the q columns of UH

indexed by A1, restricted to λl + λr rows.
7: For each size-p subset B0 ⊆ Y : compute ψ(B0) =

∑

b0
(UH)b0 restricted to

λl + λr rows indexed by Zl ∪ Zr. For each size-q subset B1 ⊆ Zr: compute
ψ′(B0, B1) =

∑

i∈B0∪B1
(UH)i restricted to the λl + λr rows indexed by

Zl ∪ Zr; i.e., expand ψ(B0) into a ball of radius q by computing
ψ′(B0, B1) ∈ F

λl+λr
2 which is the sum of φ(B0) and q columns of UH indexed

by B1, restricted to λl + λr rows.
8: For each 4-tuple (A0, A1, B0, B1) such that φ′(A0, A1) = ψ′(B0, B1):
9: Compute s′ = s+

∑

i∈A0∪A1∪B0∪B1
(UH)i.

10: If wt(s′) = w − 2p− 2q then add the corresponding w − 2p− 2q columns
in the (n− k)× (n− k) identity submatrix to s to make s′ the all-zero
syndrome. Return the vector e ∈ Fn2 indicating those columns and the
columns indexed by A0 ∪ A1 ∪ B0 ∪ B1.

11: Go back to Step 1.

Algorithm 8.1 was developed in joint work with Bernstein and Lange and published
as [BLP10].

Remark 8.1. Figure 8.2 gives a visualization of one iteration of ball-collision de-
coding for the case s = 0. Without loss of generality assume that I indexes the first

k columns of UH which then can be written as Q =

(
Q1

Q2

)

with Q1 ∈ F
(λl+λr)×k
2 ,

Q2 ∈ F
(n−k−(λl+λr))×k
2 . The set X indexes columns 1, . . . , k/2 and Y indexes columns

k/2+1, . . . , k. The set Zl indexes columns k+1, . . . , k+λl and Zr indexes columns
k+λl+1, . . . , k+λl+λr. Note that Zl∪Zr also indexes the first λl+λr rows of UH ;
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⌈
k
2

⌉ ⌊
k
2

⌋
λl λr n− k − (λl + λr)

λ
l
+
λ
r

n
−
k
−
(λ

l
+
λ
r
)

1

1
1

1

0

0

Q1

Q2

X Y Zl Zr

︸ ︷︷ ︸

p

︸ ︷︷ ︸

p

︸ ︷︷ ︸

q

︸ ︷︷ ︸

q

︸ ︷︷ ︸

w − 2p− 2q

Figure 8.2: The ball-collision-decoding algorithm. The weights p, p, q, q, and w−2p−
2q indicate how many columns are taken from the respective parts. Also compare
to Figure 5.1 in Section 5.1.2.

in particular, Zl ∪ Zr indexes the rows of Q1. The split into Zl and Zr is important
for the column selection, not when considering rows. We refer to columns restricted
to positions indexed by Zl ∪ Zr as partial columns and similarly call the syndrome
restricted to λl + λr positions partial syndrome.
The algorithm first builds sums of partial columns coming from p columns of Q1

indexed by X and q partial columns coming from columns indexed by Zl. Then the
algorithm builds sums of partial columns coming from p columns of Q1 indexed by
Y and q partial columns coming from columns indexed by Zl. If a collision occurs
between those sums, then the sum of the 2p+ 2q columns is computed on all n− k
positions and the weight is checked; if s is the sum of 2p+2q columns having weight
w − 2p− 2q then those nonzero positions come from the rows corresponding to Q2

and can be cancelled by w − 2p− 2q ones in the identity matrix on the right which
have indices outside Zl ∪ Zr.

8.1.2 Relationship to previous algorithms

Stern’s algorithm, which is called collision decoding in this context, is the special
case q = 0 of ball-collision decoding; Stern’s parameter ℓ corresponds to λl + λr
in Algorithm 8.1. The name “collision decoding” was introduced together with the
ball-collision-decoding algorithm in [BLP10]. Algorithm 8.1 was inspired by one of
the steps of “supercode decoding” which was introduced by Barg, Krouk, and van
Tilborg in [BKvT99].
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From the perspective of ball-collision decoding, the fundamental disadvantage of
collision decoding is that errors are required to avoid an asymptotically quite large
stretch of ℓ positions (λl + λr in the ball-collision setting). Ball-collision decoding
makes a much more reasonable hypothesis, namely that there are asymptotically
increasingly many errors in those positions. It requires extra work to enumerate the
points in each ball, but the extra work is only about the square root of the improve-
ment in success probability. The cost ratio is asymptotically superpolynomial as
will be discussed in Section 8.3.

Collision decoding also has a more superficial disadvantage compared to ball-collision
decoding: each iteration is slower, since computing φ(A0) for a new size-p subset
A0 is considerably more expensive than just adding columns indexed by Zl. Note
that the columns indexed by Zl contain only a single nonzero entry; adding such a
column means only flipping a bit. The cost ratio here is only polynomial, and is
not relevant to the asymptotic analysis (see Section 8.3), but is accounted for in the
bit-operation count (see Section 8.1.3).

The idea of allowing errors everywhere can be extracted, with considerable effort,
from [BKvT99]. After a detailed analysis it appeared that the algorithm in [BKvT99]
is much slower than collision decoding. The same algorithm is claimed in [BKvT99]
to have smaller exponents than collision decoding (with astonishing gaps, often 15%
or more), but this claim is based on a chain of exponentially large inaccuracies in the
algorithm analysis in [BKvT99]. The starting point of the chain is [BKvT99, “Corol-

lary 12”], which claims size
(
k
e1

)(
y
e2

)
/2by for lists that actually have size

(
k
e1

)(
y
e2

)b
/2by.

The idea of allowing errors everywhere can also be found in the much more recent
article [FS09], along with a polynomial-factor “birthday” speedup which was dis-
cussed in Section 5.3.2. The algorithm analysis by Finiasz and Sendrier in [FS09]
concludes that the overall“gain compared with Stern’s algorithm”is a constant times
“ 4
√

πp/2”, which is bounded by a polynomial in n. This is the improvement coming
from the birthday speedup. However, if parameters had been chosen more carefully
then the algorithm of [FS09] would have led to an exponential improvement over
collision decoding, contrary to the conclusions in [FS09]. This algorithm would still
have retained the secondary disadvantage described above, and therefore would not
have been competitive with ball-collision decoding.

Note that the birthday speedup as described in Section 5.3.2 can be adapted to
ball-collision decoding but would complicate the algorithm statement and analysis
without changing the exponent of binary decoding. These modifications are therefore
skipped for reasons of simplicity.

The algorithm as described in [BLP10, Section 3] has more flexible parameters. The
next remark discusses the parameter setup given in [BLP10, Section 3] and discusses
advantages and disadvantages.

Remark 8.2 (Parameter balance). The algorithm in [BLP10, Section 3] splits an
information set I into two disjoint subsets X and Y of cardinality k1 and k2 where
k = k1 + k2. The algorithm looks for a word e having weight p1, p2, q1, q2 on the
positions indexed byX , Y , Zl, and Zr, respectively. In the asymptotic analysis of the
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cost of ball-collision decoding (see Section 8.3) balanced parameters always turned
out to be asymptotically optimal (as one would expect). Of course, asymptotic
optimality of p1 = p2 does not imply the concrete optimality of p1 = p2. There
are examples with small input sizes where (p1, p2) = (2, 1) appears to be optimal as
shown in [BLP10]. For more interesting examples the operation counts in [BLP10]
always produced balanced parameters, i.e., k1 = k2 (assuming that k is even), λl =
λr, p1 = p2, and q1 = q2; see Section 8.1.4.

8.1.3 Complexity analysis

Many of the techniques for fast collision decoding can be adapted for ball-collision
decoding. This section analyzes the complexity of fast ball-collision decoding. In
particular, this section analyzes the success probability of each iteration and gives the
total number of bit operations needed for each iteration. For the sake of simplicity
assume that k is even.
The ball-collision algorithm consists like collision decoding of three steps; “updating
the matrix G with respect to a new information set I”, “list building”, and “collision
handling.” The speedups are the ones described in Sections 5.2.1 and 5.2.2. The
difference lies in the “list-building step” because many more vectors are built here
than in the corresponding step for collision decoding.
In this chapter a quite naive form of Gaussian elimination is sufficient, taking
(1/2)(n−k)2(n+k) bit operations; the interest is in large input sizes, and Gaussian
elimination takes negligible time for those sizes.
Ball-collision decoding can also make use of Finiasz and Sendrier’s birthday speedup
described in Section 5.3.2. For reasons of simplicity the information set is split into
disjoint sets X and Y .

Remark 8.3 (Reusing intermediate sums). The vectors φ(A0) ∈ F
λl+λr
2 are sums

of a partial syndrome s and p partial columns of UH indexed by a size-p subset
A0 ⊂ X . Using intermediate sums the cost of summing up p columns on λl + λr
positions amounts to (λl + λr) (L(k/2, p)− k/2) where L(k, p) =

∑p
i=1

(
k
i

)
is used

again; compare to Remark 5.10. Adding λl + λr bits of the syndrome s is done as
described in Remark 6.3; each s+

∑

i(UH)a0 (restricted to λl+λr positions) includes
at least one vector s+ (UH)i for (n− k)/2− p+1 columns (UH)i with i ∈ X . The
total cost for each vector φ(A0) amounts to (λl + λr) (L(k/2, p)− k + n/2− p+ 1)
bit operations.
Then, for each φ(A0) all

(
λl
q

)
possible q columns restricted to positions indexed by

Zl ∪ Zr are added to compute vectors φ′(A0, A1) ∈ F
λl+λr
2 . These extra columns

are in fact part of the identity submatrix and thus contain only a single 1 each.
Again intermediate sums can be used, so this step takes min{1, q}

(
k/2
p

)
L(λl, q) bit

operations for all φ′(A0, A1) together. Note that for q = 0 the cost of this step is
indeed 0. Each choice of (A0, A1) adds one element to the hash table built in Step 6.
Hence, the number of elements in this table equals exactly the number of choices for
A0 and A1, i.e.

(
k/2
p

)(
λl
q

)
. The vectors ψ′(B0, B1) ∈ F

λl+λr
2 are built similarly.
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Note that Step 8 is a standard “join” operation between the set containing vectors
φ′(A0, A1) and the set containing vectors ψ′(B0, B1); this join can be implemented
efficiently by sorting or by list building as done in the collision decoding attack
described in Section 5.2.

Remark 8.4 (Checking collisions). The last step does one check for each 4-tuple

(A0, A1, B0, B1) such that φ′(A0, A1) = ψ′(B0, B1). There are
(
k/2
p

)2(λl
q

)(
λr
q

)
choices

of (A0, A1, B0, B1). If the vectors φ′(A0, A1) and ψ′(B0, B1) were uniformly dis-

tributed among the 2λl+λr possible values then on average 2−λl−λr
(
k/2
p

)2(λl
q

)(
λr
q

)

checks would be done. The expected number of checks is extremely close to this
for almost all H ; as above we disregard the extremely unusual codes with different
behavior. Each check consists of computing the weight of s+

∑

i∈A0∪A1∪B0∪B1
(UH)i

and testing whether it equals w− 2p− 2q. Note that λl+ λr positions are known to
be zero as a result of the collision. The columns indexed by A1 and B1 are zero on
all bits in {1, . . . , n− k}\ (Zl∪Zr). So, in fact, only the sum of 2p columns indexed
by A0 and B0 and the syndrome need to be computed. When using the early-abort
weight calculation (Section 5.2.2), on average only 2(w − 2p − 2q + 1) rows of the
resulting sum are computed before the weight is found too high.

Remark 8.5 (Success probability). Assume that e is a uniform random vector of
weight w. One iteration of ball-collision decoding finds e exactly if it has the right
weight distribution, namely weight p on k/2 positions indexed by a set X , weight
p on k/2 positions specified by Y , weight q on λl positions outside the information
set I = X ∪ Y , and weight q on another set of λr positions not indexed by I. The
probability that e has this particular weight distribution is, by a simple counting
argument, exactly

b(p, q, λl, λr) =

(
n

w

)−1(
k/2

p

)2(
λl
q

)(
λr
q

)(
n− k − (λl + λr)

w − 2p− 2q

)

.

The expected number of iterations is, for almost all H , very close to the reciprocal
of the success probability of a single iteration. We explicitly disregard, without
further comment, the extremely unusual codes for which the average number of
iterations is significantly different from the reciprocal of the success probability of a
single iteration. For further discussion of this issue and how unusual it is see, e.g.,
[CGF91] and [BLPvT09].
The total cost per iteration of one iteration with parameters p, q, λl, and λr amounts
to

c(p, q, λl, λr) =
1

2
(n− k)2(n+ k)

+
(
2L(k/2, p) + n/2− (3/2)k − p+ 1

)
(λl + λr)

+ min{1, q}
(
k/2

p

)

(L(λl, q) + L(λr, q))

+ 2(w − 2p− 2q + 1)(2p)

(
k/2

p

)2(
λl
q

)(
λr
q

)

2−λl−λr .
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8.1.4 Concrete parameter examples

This section considers concrete examples in order to show the speedup gained by
ball-collision decoding in comparison to collision decoding. The first parameters were
proposed in Section 5.2.5 to achieve 256-bit security against current attacks. The
second parameters are designed according to similar rules to achieve a 1000-bit secu-
rity level against current attacks. Of course, 1000-bit security is not suggested to be
of any real-world relevance; this section considers it to demonstrate the asymptotic
superiority of ball-collision decoding.
Finiasz and Sendrier in [FS09] presented “lower bounds on the effective work factor
of existing real algorithms, but also on the future improvements that could be imple-
mented”; and said that beating these bounds would require the introduction of “new
techniques, never applied to code-based cryptosystems”. For each set of parameters
the Finiasz–Sendrier lower bound and the costs of three algorithms is evaluated:

(1) collision decoding (q1 = q2 = 0),

(2) collision decoding using the birthday trick from [FS09] as analyzed in Sec-
tion 5.3.2, and

(3) ball-collision decoding.

Ball-collision decoding achieves complexities lying below the Finiasz–Sendrier lower
bound in both of these examples. The main reason for this is that ball-collision
decoding dodges the secondary disadvantage described in Section 8.1.2; the lower
bound assumes that each new vector requires ℓ1+ ℓ2 bit operations to update φ(A),
but in ball-collision decoding each new vector requires just 1 bit operation to com-
pute a new φ′(A0, A1).
All of these costs and bounds use the same model of computation, counting the
number of bit operations for arithmetic and disregarding costs of memory access,
copies, etc. A table-indexing join operation can easily be carried out for free in this
model. In general it would be desirable to have a more carefully defined model of
computation that includes realistic memory-access costs, such as the Brent–Kung
circuit model [BK81], but the bit-operation model is simpler and is standard in
articles on this topic. Note that any reasonable accounting for memory-access costs
would need at least one memory access for each new φ′(A0, A1) in ball-collision
decoding (for the join) but would need at least two memory accesses for each new
φ(A) in the Finiasz–Sendrier lower bound (one for A and one for the join).

Remark 8.6 (256-security revisited). According to Section 5.2.5 a binary code
with length n = 6624, k = 5129, w = 117 achieves 256-bit security. see also
Section 5.2.5. The best collision-decoding parameters are actually slightly below
2256 bit operations: they use 2181.4928 iterations (on average), each taking 274.3741 bit
operations, for a total of 2255.8669 bit operations.
Collision decoding with the birthday trick takes, with optimal parameters, 2255.54880

bit operations. The birthday trick increases the cost per iteration by a factor of



142 8.2. Choosing McEliece parameters: a new bound

2.2420 compared to the classical collision-decoding algorithm, to 275.5390 bit opera-
tions. However, the trick increases the chances of finding the desired error vector
noticeably, reducing the number of iterations by a factor of 2.7951, to 2180.0099. Thus
the birthday trick yields an overall 1.2467× speedup.
The Finiasz–Sendrier lower bound is 2255.1787 bit operations, 1.6112× smaller than
the cost of collision decoding.
Ball-collision decoding with parameters λl = λr = 47, p = 8, and q = 1 needs only
2254.1519 bit operations to attack the same system. On average the algorithm needs
2170.6473 iterations each taking 283.504570 bit operations.
Ball-collision decoding thus costs 3.2830× less than collision decoding, 2.6334× less
than collision decoding with the birthday trick, and 2.0375× less than the Finiasz–
Sendrier lower bound.

Remark 8.7 (1000-bit security). Attacking a system based on a code of length
n = 30332, k = 22968, w = 494 requires 21000.9577 bit operations using collision
decoding with the optimal parameters λl = λr = 140, p = 27 and q = 0.
The birthday trick reduces the cost by a factor of 1.7243, to 21000.1717 bit operations.
This means that this system offers 1000-bit security against all previously known
attacks.
The Finiasz–Sendrier lower bound is 2999.45027 bit operations, 2.8430× smaller than
the cost of collision decoding and 1.6488× smaller than the cost of collision decoding
with the birthday trick.
Ball-collision decoding with parameters λl = λr = 156, p = 29, and q = 1 needs only
2996.21534 bit operations. This is 26.767× smaller than the cost of collision decoding,
15.523× smaller than the cost of collision decoding with the birthday trick, and
9.415× smaller than the Finiasz–Sendrier lower bound.

8.2 Choosing McEliece parameters: a new bound

The traditional approach to selecting cryptosystem parameters is as follows:

• Consider the fastest known attacks against the system. For example, in the
case of RSA, consider the latest refinements [KAF+10] of the number-field
sieve.

• Restrict attention to parameters for which these attacks take time at least
2b+δ. Here b is the desired security level, and δ is a “security margin” meant
to protect against the possibility of further improvements in the attacks.

• Within the remaining parameter space, choose the most efficient parameters.
The definition of efficiency depends on the target application: it could mean
minimal key size, for example, or minimum decryption time.

This approach does not make clear how to choose the security margin δ. Some
applications have ample time and space for cryptography, and can simply increase
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δ to the maximum value for which the costs of cryptography are still insignificant;
but in some applications cryptography is an important bottleneck, and users insist
on minimizing δ for the sake of performance.

Finiasz and Sendrier in [FS09] identified a bound on“future improvements” in attacks
against the McEliece cryptosystem, and suggested that designers use this bound to
“choose durable parameters”. The general idea of identifying bottlenecks in any
possible attack, and of using those bottlenecks to systematically choose δ, is quite
natural and attractive, and has been used successfully in many contexts. How-
ever, ball-collision decoding disproves the specific bound in [FS09], leaving open the
question of how the general idea can be applied to the McEliece cryptosystem.

Instead of using the bound in [FS09] one should use the simpler bound

min

{

1

2

(
n

w

)(
n− k
w − p

)−1(
k

p

)−1/2

: p ≥ 0

}

;

i.e., choosing the code length n, code rate k/n, and error fraction w/n so that this
bound is at least 2b. As usual, implementors can exploit the remaining flexibility in
parameters to optimize decryption time, compressed key size k(n− k), or efficiency
in any other metric of interest.

This bound has several attractive features. It is easy to estimate via standard
binomial-coefficient approximations. It is easy to compute exactly. It covers a very
wide class of attacks, as will be explained in a moment. It is nevertheless in the
same ballpark as the cost of known attacks: for example, it is 249.69 for the original
parameters (n, k, w) = (1024, 524, 50), and 2236.49 for (n, k, w) = (6624, 5129, 117).
Note that these numbers give lower bounds on the cost of the attack. Parameters
protecting against this bound pay only about a 20% performance penalty at high
security levels, compared to parameters that merely protect against known attacks.

The reader can easily verify that parameters (n, k, w) = (3178, 2384, 68) achieve 128-
bit security against this bound. For 256-bit security (n, k, w) = (6944, 5208, 136) are
recommended.

Here is the class of attacks mentioned above. Assume that each iteration of the
attack chooses an information set, hoping for exactly p errors in the set; that the
choices of information sets are independent of the target syndrome; that each iter-

ation considers at least
(
k
p

)1/2
error patterns within the information set; and that

testing each pattern costs at least 1. The
(
k
p

)1/2
iterations model the cost of a

birthday-type attack on all vectors of length k with Hamming weight p.

For each ǫ ≥ 0, a cost bound of ǫ
(
n
w

)(
n−k
w−p

)−1(k
p

)−1/2
allows at most ǫ

(
n
w

)(
n−k
w−p

)−1(k
p

)−1

iterations, and each iteration covers at most
(
n−k
w−p

)(
k
p

)
patterns of w errors, so

overall the iterations cover at most ǫ
(
n
w

)
possible patterns; i.e., the attack suc-

ceeds with probability at most ǫ. The average attack time is therefore at least
1
2

(
n
w

)(
n−k
w−p

)−1(k
p

)−1/2
. Note that batching attacks, i.e., attacking multiple targets at

once, does not provide any benefits in this approach. Thus the Johansson–Jonsson
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speedups for attacking batches of McEliece ciphertexts [JJ02] are subject to the
same bound, as are the Fossorier–Kobara–Imai speedups [FKI07].

One can object that this class does not include, e.g., attacks that hope for at most
p errors in the information set, or attacks that consider fewer error patterns per
iteration at the expense of success probability. One can object, in the opposite
direction, that the conditional success probability per error pattern inspected is

actually a constant factor smaller than the
(
k
p

)−1/2
hypothesized above; see generally

[FS09, Appendix A]. A more complicated bound that accounts for these variations
and limitations would be slightly larger than the bound stated above but would also
be more difficult to compute; a simpler, slightly smaller bound is more useful. In
any event, it is clear that beating this bound would be an astonishing breakthrough.

8.3 Asymptotic analysis

As in Section 5.4 we consider codes and error vectors of very large length n, where
the codes have dimension k ≈ Rn, and the error vectors have weight w ≈Wn. More
precisely, fix functions k, w : {1, 2, . . .} → {1, 2, . . .} that satisfy limn→∞ k(n)/n = R
and limn→∞w(n)/n = W ; more concisely, k/n → R and w/n → W . The error
fraction W is a real number satisfying 0 < W < 1/2, and the code rate R is a real
number with −W log2W − (1−W ) log2(1−W ) ≤ 1−R < 1. The latter condition
uses the assumption that the number of possible weight-w words in such a code of
length n is bounded by 2n−k.

Note that this section repeatedly invokes the standard asymptotic formula for bino-
mial coefficients, namely

1

n
log2

(
(a+ o(1))n

(b+ o(1))n

)

→ a log2 a− b log2 b− (a− b) log2(a− b) = H2(b/a),

to compute asymptotic exponents.

This section analyzes the asymptotic behavior of the cost of ball-collision decoding,
and shows that it always has a smaller asymptotic exponent than the cost of collision
decoding.

8.3.1 Asymptotic cost of ball-collision decoding

Fix real numbers P,Q, L with 0 ≤ P ≤ R/2, 0 ≤ Q ≤ L, and 0 ≤ W − 2P − 2Q ≤
1 − R − 2L. Fix ball-collision parameters p, q, λl, λr with p/n → P , q/n → Q,
λl/n→ L, and λr/n→ L.

In the formulas below, expressions of the form x log2 x are extended (continuously
but not differentiably) to 0 at x = 0. For example, the expression P log2 P means 0
if P = 0.

The asymptotic exponent of the success probability of a single iteration of ball-
collision decoding is computed as:
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Remark 8.8 (Asymptotic exponent of the success probability).

B(P,Q, L) = lim
n→∞

1

n
log2

((
n

w

)−1(
n− k − (λl + λr)

w − 2p− 2q

)(
k/2

p

)2(
λl
q

)(
λr
q

))

=W log2W + (1−W ) log2(1−W ) + (1− R− 2L) log2(1−R − 2L)

− (W − 2P − 2Q) log2(W − 2P − 2Q)

− (1− R− 2L− (W − 2P − 2Q)) log2(1− R− 2L− (W − 2P − 2Q))

+R log2(R/2)− 2P log2 P − (R − 2P ) log2(R/2− P )
+ 2L log2 L− 2Q log2Q− 2(L−Q) log2(L−Q).

The success probability of a single iteration is asymptotically 2n(B(P,Q,L)+o(1)).

We similarly compute the asymptotic exponent of the cost of an iteration:

Remark 8.9 (Asymptotic exponent of the cost of an iteration).

C(P,Q, L) = lim
n→∞

1

n
log2

((
k/2

p

)((
λl
q

)

+

(
λr
q

))

+

(
k/2

p

)2(
λl
q

)(
λr
q

)

2−λl−λr

)

= max{(R/2) log2(R/2)− P log2 P − (R/2− P ) log2(R/2− P )
+ L log2 L−Q log2Q− (L−Q) log2(L−Q),

R log2(R/2)− 2P log2 P − (R− 2P ) log2(R/2− P )
+ 2L log2 L− 2Q log2Q− 2(L−Q) log2(L−Q)− 2L}.

The cost of a single iteration is asymptotically 2n(C(P,Q,L)+o(1)). Note that this is a

simplified version of the iteration cost, namely
(
k/2
p

)
(
(
λl
q

)
+
(
λr
q

)
)+
(
k/2
p

)2(λl
q

)(
λr
q

)
2−λl−λr .

The cost is actually larger than this, but only by a factor ≤ poly(n), which we are
free to disregard since 1

n
log2 poly(n) → 0. Note that the bounds are valid whether

or not q = 0.

Remark 8.10 (Overall attack cost). The overall asymptotic ball-collision-decoding-
cost exponent is the difference D(P,Q, L) of the iteration-cost exponent C(P,Q, L)
and the success-probability exponent B(P,Q, L).

D(P,Q, L) = max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P )
− L log2 L+Q log2Q + (L−Q) log2(L−Q),−2L}

−W log2W − (1−W ) log2(1−W )

− (1−R − 2L) log2(1− R− 2L)

+ (W − 2P − 2Q) log2(W − 2P − 2Q)

+ (1− R− 2L− (W − 2P − 2Q))

· log2(1− R− 2L− (W − 2P − 2Q)).
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For example, take W = 0.04 and R = 1 + W log2W + (1 − W ) log2(1 − W ) =
0.7577078109 . . .. Choose P = 0.004203556640625, Q = 0.000192998046875, and
L = 0.017429431640625. The success-probability exponent is −0.0458435310 . . .,
and the iteration-cost exponent is 0.0348588632 . . ., so the ball-collision decoding
exponent is 0.0807023942 . . .. Ball-collision decoding with these parameters there-
fore costs 2(0.0807023942...+o(1))n to correct (0.04 + o(1))n errors in a code of rate
0.7577078109 . . .+ o(1).

Remark 8.11 (Collision-decoding cost and the lower bound). Traditional collision
decoding is the special case p1 = p2, k1 = k2, λl = λr, q1 = q2 = 0 of ball-collision
decoding. Its asymptotic cost exponent is the case Q = 0 of the ball-collision
decoding exponent stated above.

Consider againW = 0.04 and R = 1+W log2W+(1−W ) log2(1−W ). Choosing P =
0.00415087890625, Q = 0, and L = 0.0164931640625 achieves decoding exponent
0.0809085120 . . .. Partitioning the (P, L) space into small intervals and performing
interval-arithmetic calculations shows thatQ = 0 cannot do better than 0.0809; ball-
collision decoding therefore has a slightly smaller exponent than collision decoding
in this case.

Performing similar calculations for other pairs (W,R) shows that in each case the in-
fimum of all collision-decoding-cost exponents is beaten by a ball-collision-decoding-
cost exponent. Ball-collision decoding therefore has a smaller exponent than collision
decoding.

The interval-arithmetic calculations described above are proofs of the suboptimal-
ity of Q = 0 for some specific pairs (W,R). These proofs have the advantage of
computing explicit bounds on the collision-decoding-cost exponents for those pairs
(W,R), but the proofs have two obvious disadvantages.

The first disadvantage is that these proofs do not cover all pairs (W,R); they leave
open the possibility that ball-collision decoding has the same exponent as collision
decoding for other pairs (W,R). The second disadvantage is that the proofs are
much too long to verify by hand. The first disadvantage could perhaps be addressed
by much more extensive interval-arithmetic calculations, partitioning the space of
pairs (W,R) into boxes so small that, within each box, the ball-collision-decoding
exponent is uniformly better than the minimum collision-decoding exponent; but
this would exacerbate the second disadvantage.

To address both of these disadvantages the next section contains a proof that Q = 0
is always suboptimal: for every (W,R), ball-collision decoding has a smaller asymp-
totic cost exponent than collision decoding. Specifically, the following theorem about
the overall asymptotic cost exponent is proven:

Theorem 8.12. For each R,W it holds that

min{D(P, 0, L) : 0 ≤ P ≤ R/2, 0 ≤ W − 2P ≤ 1− R− 2L}
> min{D(P,Q, L) : 0 ≤ P ≤ R/2, 0 ≤ Q ≤ L, 0 ≤ W − 2P − 2Q ≤ 1−R − 2L}.
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Note that {(P, 0, L)} and {(P,Q, L)} are compact sets, and D is continuous, so we
are justified in writing “min” rather than “inf”. The proof strategy analyzes generic
perturbations of D and combines all necessary calculations into a small number of
elementary inequalities in the proofs of Lemmas 8.15 and 8.16.

8.3.2 Proof of suboptimality of Q = 0

This section shows that, for each pair (W,R) within the range considered in the pre-
vious section, there are asymptotic parameters (P,Q, L) for ball-collision decoding
whose cost exponents are smaller than the minimum collision-decoding-cost expo-
nent, i.e., smaller than the minimum cost exponent for parameters (P, 0, L).
The parameter space is the set of vectors (P,Q, L) of real numbers satisfying 0 ≤
P ≤ R/2, 0 ≤ Q ≤ L, and 0 ≤W − 2P − 2Q ≤ 1− R− 2L. This parameter space
depends implicitly on W and R.
The proof does not rely on this coding-theoretic interpretation of W,R, P,Q, L, but
readers already familiar with collision decoding may find the interpretation helpful
in understanding Lemma 8.14 below.
Most of the proof consists of analyzing the asymptotic cost exponent D(P,0,L) for
collision decoding, namely:

Remark 8.13 (Cost exponent for collision decoding).

= max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L}
−W log2W − (1−W ) log2(1−W )

− (1−R− 2L) log2(1− R− 2L) + (W − 2P ) log2(W − 2P )

+ (1− R− 2L− (W − 2P )) log2(1−R− 2L− (W − 2P )).

As mentioned earlier, D(P, 0, L) is a continuous function of the parameters (P, 0, L),
and the parameter space is compact, so there exist optimal collision-decoding pa-
rameters (P, 0, L), i.e., parameters that achieve the infimum of collision-decoding
costs. This does not imply, and the proof of Theorem 8.12 does not use, uniqueness
of the optimal parameters.
The proof that ball-collision decoding beats collision decoding relies on the following
three facts about optimal collision-decoding parameters (P, 0, L):

Lemma 8.14. If (P, L) are optimal collision-decoding parameters than

0 < L; 0 < W − 2P ; and W − 2P < (1− R− 2L)/2.

In other words, the collision space F
λl+λr
2 is asymptotically quite large, and the

uncontrolled n − k1 − k2 − (λl + λr) positions include asymptotically many error
positions, although asymptotically more non-error positions than error positions.
The three facts in Lemma 8.14 might not be news to the many authors who have
written previous articles on collision decoding. However, to the best of our knowl-
edge there were no proofs of these facts in the literature before [BLP10]. So for
completeness this section includes these proofs.
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The proofs do not require any background in coding theory. The main tool is nothing
more than basic calculus. In order to study the growth of the collision-cost exponent
induced by an increase or decrease in the values of P and L, use the Taylor-series
expansion of the logarithm function: for example, a term such as (L+ ǫ) log2(L+ ǫ)
has series expansion L log2 L+ ǫ log2(eL) + O(ǫ2) around ǫ = 0. Here e = exp(1) is
the base of natural logarithms. Beware that extra work is required in moving away
from corners of the parameter space: for example, L log2 L is not differentiable at
L = 0.

The following proof is the actual proof of how to deduce the main Theorem 8.12 from
Lemma 8.14 which will be proven afterwards. The proof is constructive, showing
how to slightly adjust optimal parameters for collision decoding to obtain better
parameters for ball-collision decoding.

Proof. (Proof of Theorem 8.12) Start with optimal collision-decoding parameters
(P, 0, L). Now consider the impact of increasing Q from 0 to δ and increasing L by
−(1/2)δ log2 δ, for very small δ. Of course, the increase in Q requires generalizing
from collision decoding to ball-collision decoding. Lemma 8.14 says that optimal
collision-decoding parameters (P, 0, L) must have 0 < L and 0 < W − 2P < (1 −
R− 2L)/2; consequently the parameter space has room for Q and L to increase.

The quantity L log2 L−Q log2Q− (L−Q) log2(L−Q) increases by −δ log2 δ+O(δ),
and 2L log2 L−2Q log2Q−2(L−Q) log2(L−Q)−2L also increases by−δ log2 δ+O(δ).
The iteration-cost exponent therefore increases by −δ log2 δ + O(δ). The success-
probability exponent increases by δ log2 δ log2(e(1 − R − 2L)) − δ log2 δ log2(e(1 −
R−2L− (W −2P )))−2δ log2 δ+O(δ). The total cost exponent therefore increases
by (δ log2 δ)(1 + log2(1− R− 2L− (W − 2P ))− log2(1−R − 2L)) +O(δ).

RewriteW−2P < (1−R−2L)/2 as 1+log2(1−R−2L−(W−2P ))−log2(1−R−2L) >
0, and deduce that the increase in the cost exponent is negative for all sufficiently
small δ > 0; note here that log2 δ is negative, and that O(δ)/(δ log2 δ) → 0 as
δ → 0. Consequently the optimal collision-decoding parameters (P, 0, L) are beaten
by (P, δ, L− (1/2)δ log2 δ) for all sufficiently small δ > 0.

Lemma 8.14 is proven using several lemmas. The first two lemmas require the most
difficult calculations, establishing a useful inequality. The next three lemmas show
that optimal collision-decoding parameters (P, L) can never have L = 0: Lemma 8.17
covers the case P = 0; Lemma 8.18 covers the case P = R/2; Lemma 8.19 covers
the intermediate cases 0 < P < R/2. Each of the proofs is constructive, showing
how to move from (P, 0) to better collision-decoding parameters.

The next two lemmas show similarly that optimal collision-decoding parameters
(P, L) cannot have 0 = W − 2P = 1 − R − 2L, and cannot have 0 = W − 2P <
1− R− 2L, so they must have 0 < W − 2P . Proving Lemma 8.14 then boils down
to proving W − 2P < (1−R− 2L)/2; that proof concludes this section.

If (P ′, 0, L′) and (P, 0, L) are in the parameter space and D(P ′, 0, L′) < D(P, 0, L)
then we say that (P ′, L′) improves upon (P, L). We also say that (P ′, L′) improves
upon (P, L) in the vacuous case that (P, 0, L) is not in the parameter space.
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Lemma 8.15. Write G = (1 +W log2W + (1−W ) log2(1−W ))/2 and

X =
1− 2G−G log2G+ (W/2) log2(W/2) + (G− (W/2)) log2(G− (W/2))

W
.

If 0 < W ≤ 0.099 then X > 2.

Proof. Simply graphing the function W 7→ X for 0 < W < 0.2 suggests that X
drops to a minimum close to 2.8 for W ≈ 0.13. However, most graphing programs
are easily fooled; a graph is not the same as a proof! It is easy to imagine a better
graphing program that uses interval arithmetic to automatically prove a lower bound
on X for a closed interval of W , but handling W → 0 would still take more work,
such as the work shown in Case 4 below.

The proof begins by rewriting X as

− log2W

2
+
−2(1−W ) log2(1−W ) + 2G log2(1−W/(2G))−W log2(2G−W )

2W
.

Note that G is a monotonic function of W for 0 < W < 0.5, decreasing from 0.5
down to 0.

Case 1: 0.079 ≤W ≤ 0.099. Evaluating G forW = 0.079 andW = 0.099 shows that
G is in the interval [0.267090, 0.300678]. Continuing in the same way through interval
evaluations ofW/(2G), log2(1−W/(2G)), 2G log2(1−W/(2G)), etc. eventually shows
that X ∈ [2.21, 3.66].

Case 2: 0.057 ≤ W ≤ 0.079. The same sequence of calculations shows first that
G ∈ [0.300676, 0.342291] and then that X ∈ [2.17, 4.03].

Case 3: 0.036 ≤ W ≤ 0.057. Here G ∈ [0.342289, 0.388180] and X ∈ [2.21, 4.56].

Case 4: 0 < W ≤ 0.036. This is the heart of the proof.

Write E = 1 − 2G = −W log2W − (1 −W ) log2(1 −W ). Then E and E +W are
increasing functions of W ; evaluating them for W = 0.036 shows that 0 < E <
E +W < 1 for 0 < W ≤ 0.036.

The Taylor-series expansion log(1 − t) = −t − t2/2 − t3/3 − t4/4 − t5/5 − · · · ,
where log denotes the natural logarithm, implies log(1 − t) ≤ −t and log(1 − t) ≥
−t − t2 − t3 − t4 − · · · = −t/(1 − t) for 0 < t < 1. In other words, for each t
with 0 < t < 1 there exists u ∈ [0, 1] such that (1 − t) log(1 − t) = −t + ut2.
In particular, (1 − W ) log2(1 − W ) = (−W + αW 2)/ log 2 for some α ∈ [0, 1];
(1−E) log2(1−E) = (−E+βE2)/ log 2 for some β ∈ [0, 1]; and (1−E−W ) log2(1−
E −W ) = (−(E +W ) + γ(E +W )2)/ log 2 for some γ ∈ [0, 1].



150 8.3. Asymptotic analysis

Now E = −W (logW )/ log 2− (−W + αW 2)/ log 2 so

X

− log2W
=

1

2
− (1−W ) log(1−W )

−W logW
− (1−E) log(1−E)

−2W logW

+
(1− E −W ) log(1−E −W )

−2W logW

=
1

2
+
−W + αW 2

W logW
+
−E + βE2

2W logW
− −E −W + γ(E +W )2

2W logW

=
1

2
+
−1 + 2αW

2 logW
+
βE2 − γ(E +W )2

2W logW

=
1

2
+
−1 + 2αW

2 logW
− γW (log 2− 2 logW + 2(1− αW ))

2 log 2 logW

+
(β − γ)W (1 + log2W − 2αW + α2W 2 − 2(1− αW ) logW )

2 log2 2 logW

so

X =
1

2 log 2
− logW

2 log 2
− αW

log 2
+
γW (log 2− 2 logW + 2(1− αW ))

2 log2 2

− (β − γ)W (1 + log2W − 2αW + α2W 2 − 2(1− αW ) logW )

2 log3 2

=
1

2 log 2
− logW

2 log 2
− (β − γ)W log2W

2 log3 2

+
(β − γ(1 + log 2))W logW

log3 2
+

(γ(log2 2 + 2 log 2 + 1)− α2 log2 2− β)W
2 log3 2

− (β − γ)αW 2 logW

log3 2
+

(β − γ(1 + log 2))αW 2

log3 2
− (β − γ)α2W 3

2 log3 2

∈ 1

2 log 2
− logW

2 log 2
− [−1, 1]W log2W

2 log3 2

+
[−1 − log 2, 1]W logW

log3 2
+

[−1− 2 log2 2, log2 2 + 2 log 2 + 1]W

2 log3 2

− [−1, 1]W 2 logW

log3 2
+

[−1− log 2, 1]W 2

log3 2
− [−1, 1]W 3

2 log3 2
.

Now put a separate lower bound on each term, using the positivity ofW , −W logW ,
etc.:

X ≥ 1

2 log 2
− logW

2 log 2
− W log2W

2 log3 2
+
W logW

log3 2

+
(−1 − 2 log2 2)W

2 log3 2
− −W

2 logW

log3 2
+

(−1− log 2)W 2

log3 2
− W 3

2 log3 2
.

Each term here is monotonically decreasing for 0 < W ≤ 0.036: for example,
W log2W has derivative 2 logW + log2W , which is zero only for W = 1/e2 > 0.1.



8. Ball-collision decoding 151

Each quantity is therefore bounded below by its value at 0.036: i.e.,

X ≥ 1

2 log 2
− log 0.036

2 log 2
− 0.036 log2 0.036

2 log3 2
+

0.036 log 0.036

log3 2

+
(−1− 2 log2 2)0.036

2 log3 2
− −0.036

2 log 0.036

log3 2
+

(−1 − log 2)0.0362

log3 2
− 0.0363

2 log3 2

≥ 2.02

for 0 < W ≤ 0.036.

Lemma 8.16. Each (P, 0, L) in the parameter space satisfies

1− R− ((R/2) log2(R/2)− P log2 P − (R/2− P ) log2(R/2− P )) > 2W.

Proof. Case 1: 0.099 < W < 0.5.
Recall that 1−R ≥ −W log2W − (1−W ) log2(1−W ). Hence 1− (3/2)R− 2W ≥
−(1/2)−2W − (3/2)W log2W − (3/2)(1−W ) log2(1−W ). The values of this lower
bound at 0.099, 0.3, 0.5 are ≈ 0.000726,≈ 0.2218, 0 respectively; the derivative of
the lower bound is −2− (3/2) log2(eW ) + (3/2) log2(e(1−W )), which has a unique
zero at W = 1/(1 + 24/3) ≈ 0.2841; so the lower bound is positive for all W with
0.099 < W < 0.5. In particular 2W < 1− (3/2)R if 0.099 < W < 0.5.
The maximum possible value of (R/2) log2(R/2)−P log2 P−(R/2−P ) log2(R/2−P )
is (R/2) log2(R/2)−2(R/4) log2(R/4) = R/2, so 1−R−((R/2) log2(R/2)−P log2 P−
(R/2− P ) log2(R/2− P )) ≥ 1− (3/2)R > 2W as claimed.
Case 2: 0 < W ≤ 0.099.
Define G and X as in Lemma 8.15; then X > 2. Note that G −W has derivative
(1/2) log2(eW ) − (1/2) log2(e(1 − W )) − 1 < 0 for 0 < W ≤ 0.099, and value
0.168091 . . . > 0 at W = 0.099, so G > W for 0 ≤W ≤ 0.099.
Furthermore R/2 ≤ G by definition of G and the definition of the parameter space.
So (R/2) log2(R/2)− P log2 P − (R/2− P ) log2(R/2− P ) ≤ G log2G− P log2 P −
(G−P ) log2(G−P ); note that for any fixed c > 0 and x > c the function x log2 x−
(x− c) log2(x− c) is increasing (check its derivative).
Note also that the function x log2 x+(c−x) log2(c−x) is decreasing for x < c/2. The
parameter space forces P ≤W/2 < G/2 so G log2G− P log2 P − (G− P ) log2(G−
P ) ≤ G log2G− (W/2) log2(W/2)− (G− (W/2)) log2(G− (W/2)).
Combining all of these inequalities produces 1−R− ((R/2) log2(R/2)− P log2 P −
(R/2−P ) log2(R/2−P )) ≥ 1−R−(G log2G−(W/2) log2(W/2)−(G−(W/2)) log2(G−
(W/2))) ≥ XW > 2W as claimed.

Lemma 8.17. There is a real number δ > 0 such that (δ,−(1/2)δ log2 δ) improves
upon (0, 0).

Proof. If δ ≥ 0 is a sufficiently small real number then the parameters (P, L) =
(δ,−(1/2)δ log2 δ) satisfy the constraints 0 ≤ P ≤ R/2, 0 ≤ L, and 0 ≤ W −
2P ≤ 1 − R − 2L since 0 < R and 0 < W . The collision-cost exponent is
max{δ log2 δ +O(δ), δ log2 δ}− (1−W ) log2(1−W )− (1−R) log2(1−R)+(1−R−
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W ) log2(1−R−W )−(δ log2 δ) log2(e(1−R))+(δ log2 δ) log2(e(1−R−W ))+O(δ) =
−(1−W ) log2(1−W )−(1−R) log2(1−R)+(1−R−W ) log2(1−R−W )+(δ log2 δ)(1+
log2(1−R−W )−log2(1−R))+O(δ). The inequality 2W < 1−R implies 1+log2(1−
R−W )− log2(1−R) > 0, so (δ log2 δ)(1 + log2(1−R−W )− log2(1−R)) +O(δ)
is negative for all sufficiently small δ > 0, improving upon (0, 0).

Lemma 8.18. There is a real number δ > 0 such that (R/2 − δ,−(1/2)δ log2 δ)
improves upon (R/2, 0).

Proof. If W < R then (R/2, 0, 0) is outside the parameter space so the conclusion
is vacuously satisfied. Assume from now on that W ≥ R.
For all sufficiently small δ ≥ 0 the parameters (P, L) = (R/2 − δ,−(1/2)δ log2 δ)
satisfy the constraints 0 ≤ P ≤ R/2, 0 ≤ L, and 0 ≤ W − 2P ≤ 1 − R − 2L. The
iteration-cost exponent is max{δ log2 δ +O(δ), δ log2 δ}−W log2W−(1−R) log2(1−
R)+ (W −R+2δ) log2(W −R+2δ)− (δ log2 δ) log2(e(1−R))+ (δ log2 δ) log2(e(1−
W ))+O(δ) = −W log2W − (1−R) log2(1−R)+ (W −R+2δ) log2(W −R+2δ)+
(δ log2 δ)(1 + log2(1−W )− log2(1− R)) +O(δ).
If W = R then (W −R+2δ) log2(W −R+2δ)+(δ log2 δ)(1+ log2(1−W )− log2(1−
R)) +O(δ) = 3δ log2 δ +O(δ). This is negative for all sufficiently small δ > 0.
Otherwise W > R so the difference between (W − R + 2δ) log2(W − R + 2δ) +
(δ log2 δ)(1+log2(1−W )−log2(1−R))+O(δ) and (W−R) log2(W−R) is (δ log2 δ)(1+
log2(1−W )− log2(1−R))+O(δ). This difference is also negative for all sufficiently
small δ > 0: recall that 2(1−W ) > 1 > 1−R, so the coefficient 1 + log2(1−W )−
log2(1− R) is positive.
Either way (P, L) = (R/2− δ,−(1/2)δ log2 δ) improves upon (R/2, 0).

Lemma 8.19. If 0 < P < R/2 then there is a real number δ > 0 such that (P, δ)
improves upon (P, 0).

Proof. Consider the impact of changing the parameter L from 0 to δ. The quantity
−(R/2) log2(R/2)+P log2 P +(R/2−P ) log2(R/2−P ) is negative and unchanged,
and −2L changes from 0 to −2δ, so max{−(R/2) log2(R/2) + P log2 P + (R/2 −
P ) log2(R/2 − P ),−2L} increases by −2δ if δ is sufficiently small. The quantity
−(1−R−2L) log2(1−R−2L) increases by 2δ log2(e(1−R))+O(δ2). The quantity
(1−R− 2L− (W − 2P )) log2(1−R− 2L− (W − 2P )) increases by −2δ log2(e(1−
R− (W − 2P ))) +O(δ2).
The total collision-cost exponent increases by 2δ(−1 + log2(1 − R) − log2(1 − R −
(W − 2P ))) + O(δ2). The coefficient −1 + log2(1 − R) − log2(1 − R − (W − 2P ))
is negative since W − 2P < (1 − R)/2. Hence (P, δ) improves upon (P, 0) for all
sufficiently small δ > 0.

Lemma 8.20. There is a real number c ≥ 2 satisfying the following condition: if
W < R then c log2 c− (c− 1) log2(c− 1) > (1/2)(log2(R −W )− log2W ). For any
such c there is a real number δ > 0 such that ((W − δ)/2, (1−R− cδ)/2) improves
upon (W/2, (1−R)/2).
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Proof. If W > R then (W/2, (1 − R)/2) is outside the parameter space and the
conclusions are vacuously satisfied for, e.g., c = 2 and δ = 1. Assume from now on
that W ≤ R.
Choose a real number c large enough to meet both of the following constraints: first,
c ≥ 2; second, if W < R then c log2 c − (c − 1) log2(c − 1) > (1/2)(log2(R −W ) −
log2W ). This can always be done: c log2 c− (c− 1) log2(c− 1)→∞ as c→∞.
Consider the impact of changing L from (1−R)/2 to (1−R−cδ)/2, and at the same
time changing P fromW/2 to (W −δ)/2. This change fits the parameter constraints
for sufficiently small δ > 0.
The quantity −(1 −R − 2L) log2(1−R − 2L) changes from 0 to −cδ log2(cδ). The
quantity (W − 2P ) log2(W − 2P ) changes from 0 to δ log2 δ. The quantity (1−R−
2L−(W−2P )) log2(1−R−2L−(W−2P )) changes from 0 to (c−1)δ log2((c−1)δ).
The quantity max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L}
is dominated by its first term since 2L = 1−R > 2W+((R/2) log2(R/2)−P log2 P−
(R/2−P ) log2(R/2−P )) by Lemma 8.16. It thus increases by ((W−δ)/2) log2((W−
δ)/2)−(W/2) log2(W/2)+((R−W+δ)/2) log2((R−W+δ)/2)−((R−W )/2) log2((R−
W )/2) if δ is sufficiently small.
The total cost exponent increases by the quantity δ((c− 1) log2(c− 1)− c log2 c) +
((W − δ)/2) log2((W − δ)/2)− (W/2) log2(W/2) + ((R−W + δ)/2) log2((R−W +
δ)/2)− ((R−W )/2) log2((R−W )/2).
If W = R then this increase is (δ/2) log2(δ/2) + O(δ) and is therefore negative for
all sufficiently small δ > 0.
If W < R then this increase is δ((c − 1) log2(c − 1) − c log2 c + (1/2)(log2(e(R −
W )/2)− log2(eW/2)))+O(δ2), The coefficient of δ is negative by choice of c, so the
increase is negative for all sufficiently small δ > 0.
In all cases ((W − δ)/2, (1− R− cδ)/2) improves upon (W/2, (1−R)/2).

Lemma 8.21. Assume that 0 < 1 − R − 2L. Then there is a real number δ > 0
such that ((W − δ)/2, L) improves upon (W/2, L).

Proof. Consider collision-decoding parameters (P, L) with 0 =W−2P < 1−R−2L.
If W > R then (W/2, 0, L) is outside the parameter space so the conclusion is
vacuously satisfied. Assume from now on that W ≤ R.
Consider the impact of changing P from W/2 to (W − δ)/2. This change fits the
parameter constraints for sufficiently small δ > 0.
The quantity (W − 2P ) log2(W − 2P ) increases by δ log2 δ. The quantity (1− R−
2L− (W − 2P )) log2(1− R− 2L− (W − 2P )) increases by O(δ). The quantity

max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L}

increases by a value between 0 and ((W−δ)/2) log2((W−δ)/2)−(W/2) log2(W/2)+
((R − W + δ)/2) log2((R − W + δ)/2 − ((R − W )/2) log2((R − W )/2), which is
(δ/2) log2(δ/2) +O(δ) if W = R and O(δ) if W < R. The total increase in the cost
is between δ log2 δ +O(δ) and (3/2)δ log2 δ +O(δ), and is therefore negative for all
sufficiently small δ > 0.
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Proof. (Proof of Lemma 8.14) The hypothesis is that (P, L) minimizes D(P, 0, L),
i.e., that nothing improves upon (P, L).
The definition of the parameter space implies L ≥ 0. Suppose that L = 0. Then P <
0 would contradict the definition of the parameter space; P = 0 would contradict
Lemma 8.17; 0 < P < R/2 would contradict Lemma 8.19; P = R/2 would contradict
Lemma 8.18; and P > R/2 would contradict the definition of the parameter space.
Hence L > 0.
The definition of the parameter space also implies 0 ≤ W − 2P . Suppose that
0 = W − 2P . Then 0 = 1 − R − 2L would force (P, L) = (W/2, (1 − R)/2),
contradicting Lemma 8.20; 0 < 1 − R − 2L would contradict Lemma 8.21; and
0 > 1 − R − 2L would contradict the definition of the parameter space. Hence
0 < W − 2P .
Suppose that 2L > (R/2) log2(R/2)−P log2 P − (R/2−P ) log2(R/2−P ). Consider
the impact of decreasing L by δ. The quantity

max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L}

is dominated by the first term, so it is unchanged for sufficiently small δ. The total
cost decreases by (2 log2(1 − R − 2L)− 2 log2(1 − R − 2L− (W − 2P )))δ + O(δ2),
contradicting the optimality of (P, L); note that the coefficient 2 log2(1−R− 2L)−
2 log2(1−R − 2L− (W − 2P )) is positive since W − 2P > 0.
Therefore 2L ≤ (R/2) log2(R/2)−P log2 P − (R/2−P ) log2(R/2−P ), and 1−R−
2L > 2W ≥ 2(W − 2P ) as claimed.



Chapter 9

Attacking the FSB compression
function

Code-based cryptography is mainly concerned with public-key cryptography. This
chapter however deals with symmetric code-based cryptography, namely with an
attack on the code-based cryptographic hash function FSB.
The results presented here are based on the article“FSBday: Implementing Wagner’s
generalized birthday attack against the SHA-3 round-1 candidate FSB” [BLN+09]
which is joint work with Bernstein, Lange, Niederhagen, and Schwabe. The so-
called “FSBday” attack has been implemented by Niederhagen and Schwabe, and
was carried out successfully.

• This chapter essentially follows [BLN+09] which focused on applying the gen-
eralized birthday attack in a storage-restricted environment. As the emphasis
of this thesis lies on code-based cryptography, this chapter shuffles results of
the first three sections of [BLN+09] and in particular puts the description of
the FSB hash function in the perspective of coding theory.

• This thesis omits the details of Niederhagen’s and Schwabe’s implementation
which can be found in [BLN+09, Section 5] and also in more detail in Schwabe’s
Ph.D. thesis [Sch11].

9.1 The FSB hash function

The “Fast Syndrome Based hash function” (FSB) was introduced by Augot, Finiasz
and Sendrier in 2003 in [AFS03]. The security of the compression function of FSB is
related to the syndrome-decoding problem discussed in Remark 4.11. On the other
hand generic attacks can be applied: Coron and Joux pointed out in [CJ04] that
Wagner’s generalized birthday attack [Wag02a] can be used to find preimages and
collisions in the compression function of FSB.
Augot, Finiasz, and Sendrier adjusted their parameters in a follow-up article [AFS05]
to withstand Wagner’s attack. The design of the compression function, in particular
the choice of codes, was tuned in [FGS07] and [Fin08]. In 2008 Augot, Finiasz,
Gaborit, Manuel, and Sendrier submitted an improved version of FSB to NIST’s
SHA-3 competition [NIS07]; see also [NPS10]. FSB was one of the 64 hash functions
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submitted to the competition, and one of the 51 hash functions selected for the first
round. However, FSB was significantly slower than most submissions, and was not
one of the 14 hash functions selected for the second round. The FSB proposal also
contains a reduced-size version FSB48 which was suggested as a training case by the
designers of FSB.
This section briefly describes the construction of the FSB hash function as defined
in the SHA-3 proposal. Details which are necessary for the implementation of FSB
but which do not influence the attack are omitted.
The FSB hash function processes a message in three steps: first the message is con-
verted by a so-called domain extender into suitable inputs for the compression func-
tion. The compression function digests the inputs in the second step. In the third
and final step the Whirlpool hash function designed by Barreto and Rijmen [BR03]
is applied to the output of the compression function in order to produce the desired
length of output. This chapter only deals with attacking the compression function.
In order to place the compression function into coding theory we introduce “regular”
words.

Definition 9.1. Let n, w be integers with w dividing n. An element in Fn2 of
Hamming weight w is called a regular word or simply a regular n-bit string if there
is exactly a single 1 in each interval [(i − 1) n

w
, i n
w
− 1]1≤i≤w. Any such interval is

called a block.

The FSB compression function is set up as follows:

• The main parameters of the compression function are called n, r, and w. The
parameter w is chosen such that it divides n.

• Consider n strings of length r which are chosen uniformly at random and which
can be written as an r × n binary matrix H .

• The input of the compression function is a regular n-bit string x.

• The matrix H is split into w blocks of n/w columns. Each nonzero entry of
the input x indicates exactly one column in each block. The output of the
compression function is an r-bit string which is produced by computing the
sum of all the w columns of the matrix H indicated by the input string.

The matrix H can be seen as the parity-check matrix of a binary linear code C
of length n and dimension n − r; thus the parameter r denotes the codimension
of C. From the coding-theory perspective the compression function computes the
syndrome of x ∈ Fn2 with respect to H ; the peculiarity of the FSB compression
function lies in its restriction to regular inputs x. The FSB proposal [AFG+09]
actually specifies a particular structure of H for efficiency; the details are outlined
in Remark 9.6 but do not affect Wagner’s attack.

Definition 9.2. A regular word x which has syndrome s with respect to the FSB
compression matrix H is called a preimage for s.
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Definition 9.3. A collision in the FSB compression function means a pair of distinct
regular n-bit strings x, x′ such that the columns indicated by x and x′ sum up to
the same syndrome.

Note that by linearity the sum (mod 2) of the columns of H indicated by x and
x′ yields the zero-syndrome. Thus, when looking for collisions we could look for
2-regular codewords in C, i.e., codewords of weight 2w having exactly 2 ones in each
block of length n/w. Note that this perspective leads to a small inefficiency. In
fact, since columns could cancel each other one should also allow any codeword of
weight 2w′ for 0 < w′ ≤ w having weight exactly 0 or 2 in each block of length n/w.
For the sake of simplicity those cases are ignored; our attack will look for 2-regular
words of weight exactly 2w.
In [AFS05] the problem of finding preimages was called the “regular syndrome de-
coding problem” and the problem of finding collisions was called “2-regular null-
syndrome decoding” problem. As certain instances of the syndrome decoding prob-
lem (Remark 4.11) both problems were proven to be NP-complete in [AFS05].
Following the notation in [AFG+09] FSBlength denotes the version of FSB which
produces a hash value of length length. Note that the output of the compression
function has r bits where r is considerably larger than length.

Remark 9.4 (FSB versions). NIST demands hash lengths of 224, 256, 384, and
512 bits, respectively. The SHA-3 proposal contains five versions of FSB: FSB160,
FSB224, FSB256, FSB384, and FSB512. The parameters for those versions are listed
in Table 9.1.

The proposal also contains FSB48 which is a reduced-size version of FSB and the
main attack target in this chapter. The specifications are as follows.

Remark 9.5 (FSB48 parameters). The binary matrix H for FSB48 has dimensions
192 × 3 · 217; i.e., r equals 192 and n is 3 · 217. In each round a message chunk is
converted into a regular 3 · 217-bit string of Hamming weight w = 24. The matrix H
contains 24 blocks of length 214. Each 1 in the regular bit string indicates exactly
one column in a block of the matrix H . The output of the compression function is
the sum of those 24 columns.

The attack against FSB48 considers a pseudo-random matrix H which is constructed
as described in [AFG+09, Section 1.2.2]:

Remark 9.6 (A pseudo-random matrix for FSB48). The matrix H consists of 2048
submatrices, each of dimension 192 × 192. In order to build the first submatrix
consider a slightly larger matrix of dimension 197 × 192. Its first column consists
of the first 197 digits of π where each digit is taken modulo 2. The remaining 191
columns of this submatrix are cyclic shifts of the first column. The matrix is then
truncated to its first 192 rows which form the first submatrix of H . For the second
submatrix consider digits 198 up to 394 of π. Again build a 197 × 192 bit matrix
where the first column corresponds to the selected digits (each taken modulo 2)
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and the remaining columns are cyclic shifts of the first column. In order to get the
second block matrix of H truncate this submatrix to the first 192 rows. Construct
the remaining blocks in the same way.

Note that this is one possible choice for the matrix H . The attack described in
[BLN+09] does not make use of the structure of this particular matrix. The FSB-
day attack nevertheless uses this matrix since it is contained in the FSB reference
implementation submitted to NIST by the FSB designers.

Remark 9.7 (Note on information-set decoding). In [AFG+09] the FSB designers
say that Wagner’s attack is the fastest known attack for finding preimages, and for
finding collisions for small FSB parameters, but that another attack— information-
set decoding— is better than Wagner’s attack for finding collisions for large FSB
parameters. In general, information-set decoding can be used to find an n-bit string
of weight 48 indicating 48 columns of H which add up to zero.
However, classical information-set decoding will not take into account that the target
is a regular n-bit string. The only known way to obtain a regular n-bit string is
running the algorithm repeatedly until the output happens to be regular. Thus, the
running times given in [AFG+09] certainly provide lower bounds for information-set
decoding, but in practice they are not likely to hold.

9.2 Wagner’s generalized birthday attack

The birthday paradox describes the curiosity that it takes a group of only 23 random
people in order to have a chance of more than 50% that two people in that group
have their birthday on the same day. Most people find it surprising that the number
n = 23 is quite small compared to N = 365 days. However, simply calculating prob-
abilities shows that the probability Pn of “no two people having the same birthday”
for a group of n people and N possible birthdays is less than 1

2
if n ≈

√
2 log 2

√
N .

This square-root effect also shows up in a similar problem, the so-called birthday
problem, which relates to finding collisions in many cryptographic algorithms. In
particular, let L and L′ be two lists containing uniform random bit strings of length
B which are uniformly distributed among all 2B possible values. Then one can
expect to find at least one pair (x, x′) ∈ L × L′ with x = x′ if both lists have size
about 2B/2. The search for (x, x′) can be performed by first sorting L and then
checking for each x′ ∈ L′ if it is contained in L. Note that from now on we rather
speak of bit strings, which we see as elements from the set {0, 1}B, rather than of
vectors in FB2 .

Definition 9.8. The generalized birthday problem considers k lists containing uni-
form random B-bit strings. The task is to find k nonzero elements— exactly one in
each list—whose sum modulo 2 equals 0.

Another name for the generalized birthday problem with k lists is the k-sum problem.
Wagner [Wag02a] gave an efficient algorithm for this problem. His algorithm is most
efficient if k is a power of 2 and we will restrict to this case from now on.
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Note that the idea of generalized birthday attacks is much older than Wagner’s
algorithm. Camion and Patarin [CP91] introduced a similar attack at Eurocrypt
1991. However, the next section follows Wagner’s description.

9.2.1 Wagner’s tree algorithm

Fix an integer i > 2. Wagner’s algorithm builds a binary tree starting from input
lists L0,0, L0,1, . . . , L0,2i−1−1 where we denote list k on level j by Lj,k (see Figure 9.3).

In order to identify 2i−1 elements in {0, 1}B summing up to zero, these elements are
seen as a concatenation of i times B/i bits read from left to right. For the moment
we simply assume that B is a multiple of i and refer the reader to Remark 9.9 for the
general case. Each level of the algorithm is concerned with B/i bits. The speed and
success probability of the algorithm are analyzed under the following assumption:
for 0 ≤ j < i − 2 each list Lj,k contains about 2B/i elements which — if restricted
to the B/i bits considered at level j —are uniformly distributed over all possible

B/i elements in {0, 1}B/i; similarly, each of the two lists at level i − 2 contain 2B/i

elements whose right-most 2B/i bits are uniformly distributed over all possible 2B/i

elements in {0, 1}2B/i.

• On level 0 take the first two lists L0,0 and L0,1 and compare their list elements
on their left-most B/i bits. Given that each list contains about 2B/i uniform
random elements one can expect about 2B/i pairs of elements which are equal
on their left-most B/i bits. For each of these pairs compute the sum of both
elements on all their B bits and put this sum into a new list L1,0. Similarly
compare the other lists—always two at a time—and look for elements match-
ing on their left-most B/i bits which are added and put into new lists. This
process of merging yields 2i−2 lists each containing about 2B/i elements which
are zero on their left-most B/i bits; those B/i bits are clamped in the sense
that they can be neglected on the next level. This completes level 0.

• On level 1 take the first two lists L1,0 and L1,1 which are the results of merging
the lists L0,0 and L0,1 as well as L0,2 and L0,3 from level 0. Compare the
elements of L1,0 and L1,1 on their left-most 2B/i bits. As a result of the
merging in the previous level, the last B/i bits are already known to be 0, so
it suffices to compare the next B/i bits. Each list on level 1 contains about
2B/i elements which are again assumed to be uniformly distributed over all
possible elements; thus one can expect about 2B/i elements matching on B/i
bits. For each pair of matching elements (x, x′) compute the sum x + x′ and
put it into a new list L2,0. Similarly the remaining lists on level 1 are handled.

• Continue in the same way until level i−2. On each level j consider the elements
on their left-most (j + 1)B/i bits of which jB/i bits are known to be zero as
a result of the previous merge. The merge operation on level i− 2 yields two
lists containing about 2B/i elements. The left-most (i − 2)B/i bits of each
element in both lists are zero. Comparing the elements of both lists on their
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level 0 1 2 3

Figure 9.1: Clamping B/5 bits on level 0, 1, and 2 and 2B/5 bits on level 3 given
16 lists of B-bit strings.

2B/i remaining bits gives 1 expected match, i.e., an element being zero on all
B entries. Since each element is the sum of elements from the previous steps
this final sum is the sum of 2i−1 elements from the original lists and thus a
solution to the generalized birthday problem.

Note that we will refine the clamping operation in the next section.

Remark 9.9. We can also handle non-integer values of B/i, i.e., cases where B is
not a multiple of i. We can round up the real number B/i to the nearest integer
and then clamp ⌈B/i⌉ bits on levels 0 to i − 3 and B − (i − 2)⌈B/i⌉ bits on level
i− 2. If the input lists each contain about 2⌈B/i⌉ elements we can expect a collision
under the same randomness assumptions as before.

9.2.2 Wagner in storage-restricted environments

In [AFS05] Augot, Finiasz, and Sendrier also analyzed Wagner’s attack in the case
where the size of the input lists does not equal 2B/i. They noticed that the FSB
compression matrix H yields more elements than needed for Wagner’s algorithm; in
particular, the number of possible elements 2ℓ per list coming from columns of H is
usually not anywhere near 2B/i, no matter which B is given and which i is chosen.
For ℓ smaller than B/i [AFS05] proposes a precomputation step which balances
the number of possible elements with the number of elements needed for Wagner’s
algorithm to succeed. As a result of the precomputation the number of bits clamped
per level is smaller than B/i. Note that the parameters i and ℓ dictate the amount
of storage used. Bernstein in [Ber07] considered a more general scenario where only
a limited amount of storage is available. He introduces an extra parameter in order
to control storage; in a precomputation step the amount of list entries per list is
reduced as well as the amount of clamped bits per level. Another special case of
the same techniques appeared in a 2009 article [MS09] by Minder and Sinclair. We
describe and generalize the “precomputation” technique following [Ber07].

Remark 9.10 (Clamping through precomputation). Suppose that there is space
for lists of size only 2b with b < B/i. Bernstein suggests to generate 2b+(B−ib) entries
per list and only consider those of which the left-most B − ib bits are zero.
This idea can be generalized as follows: the left-mostB−ib bits can have an arbitrary
value which is called clamping value or clamping constant. This clamping value does
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level pre 0 1 2 3

Figure 9.2: Clamping B−5b in a precomputation step and b bits on level 0, 1, and 2,
and 2b bits on level 3 given 16 lists of B-bit strings where there is space for storing
only lists with 2b elements.

not even have to be the same on all lists as long as the sum of all clamping values
is zero. This will be important if an attack does not produce a collision; then the
attack is restarted with a different clamping value.

Note that the idea of clamping constants can be applied to any step of the algorithm.
We refine the clamping operation by allowing that at any level of Wagner’s tree
algorithm the sum of two elements on b bits can be any value as long as the sum of
all the clamping values on that level is zero.
Clamping through precomputation may be limited by the maximal number of entries
which can be generated per list. Furthermore, halving the available storage space
increases the precomputation time by a factor of 2i.
Note that clamping some bits through precomputation might be a good idea even if
enough storage is available as one can reduce the amount of data in later steps and
thus make those steps more efficient.
After the precomputation step Wagner’s tree algorithm starts with lists containing
bit strings of length B′ where B′ equals B minus the number of clamped bits. The
performance evaluation of the Wagner attack in this chapter only considers lists on
level 0 after clamping through precomputation and then uses B instead of B′ for
the number of bits in these entries.

Remark 9.11 (Repeating the attack). Another way to mount Wagner’s attack in
storage-restricted environments is to carry out the whole computation with smaller
lists leaving some bits at the end“uncontrolled.” One can deal with the lower success
probability by repeatedly running the attack with different clamping values.
In the context of clamping through precomputation one can simply vary the clamping
values used during precomputation. If for some reason it is not possible to clamp bits
through precomputation the same idea of changing clamping values can be applied
in an arbitrary merge step of the tree algorithm. Note that any solution to the
generalized birthday problem can be found by some choice of clamping values.

Wagner’s algorithm, without clamping through precomputation, produces an ex-
pected number of exactly one collision. However this does not mean that running
the algorithm necessarily produces a collision.

Remark 9.12 (Expected number of runs). In general, the expected number of runs
of Wagner’s attack is a function of the number of remaining bits in the entries of
the two input lists of the last merge step and the number of elements in these lists.
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Assume that b bits are clamped on each level and that lists have length 2b. Then
the probability to have at least one collision after running the attack once is

Psuccess = 1−
(
2B−(i−2)b − 1

2B−(i−2)b

)22b

and the expected number of runs E(R) is the reciprocal of Psuccess.
For larger values of B − ib the expected number of runs is about 2B−ib. The time
for the attack tW is modelled as being linear in the amount of data on level 0, i.e.,

tW ∈ Θ
(
2i−12B−ib2b

)
. (9.1)

Here 2i−1 is the number of lists, 2B−ib is approximately the number of runs, and 2b is
the number of entries per list. Observe that this formula will usually underestimate
the real time of the attack by assuming that all computations on subsequent levels
are together still linear in the time required for computations on level 0.

If because of storage restrictions the number of uncontrolled bits is high, it may be
more efficient to use a variant of Wagner’s attack that uses Pollard iteration [Pol78],
[Knu97, Chapter 3, exercises 6 and 7].

Remark 9.13 (Using Pollard iteration). Assume that L0 = L1, L2 = L3, etc.,
and that combinations x0 + x1 with x0 = x1 are excluded. Then the output of
the generalized birthday attack will be a collision between two distinct elements of
L0+L2+· · ·+L2i−1 . Another approach is to start with only 2i−2 lists L0, L2, . . . , L2i−1

and apply the usual Wagner tree algorithm, with a nonzero clamping constant to
enforce the condition that x0 6= x1. The number of clamped bits before the last
merge step is now (i − 3)b. The last merge step produces 22b possible values, the
smallest of which has an expected number of 2b leading zeros, leaving B − (i− 1)b
uncontrolled. Think of this computation as a function mapping clamping constants
to the final B − (i − 1)b uncontrolled bits and apply Pollard iteration to find a
collision between the output of two such computations; combination then yields a
collision of 2i−1 B-bit strings. As Pollard iteration has square-root running time,
the expected number of runs for this variant is 2B/2−(i−1)b/2, each taking time 2i−22b

(compare to (9.1)), so the expected running time is

tPW ∈ Θ
(
2i−22B/2−(i−1)b/2+b

)
. (9.2)

The Pollard variant of the attack becomes more efficient than plain Wagner with
repeated runs if B > (i+ 2)b.

9.3 Attacking the compression function of FSB48

This section describes how Wagner’s generalized birthday attack can be applied to
FSB48. It turns out that a straightforward implementation would need 20 TB of
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storage as will be shown in the following. However, the FSBday attack was designed
to run on 8 nodes of the Coding and Cryptography Computer Cluster (CCCC) at
Technische Universiteit Eindhoven [Lan] which have a total hard-disk space of only
5.5 TB. This section describes the methods in [BLN+09] for carrying out the attack
in this storage-restricted environment.

9.3.1 Applying Wagner’s attack to FSB48

Coron and Joux described in [CJ04] how to to find preimages and collisions in
the compression function of FSB using Wagner’s generalized birthday attack. This
section presents a slightly streamlined version of the attack of [CJ04] in the case of
FSB48.

Remark 9.14. A collision for FSB48 is given by 48 columns of the matrix H which
add up to zero; the collision has exactly two columns per block. Each block contains
214 columns and each column is a 192-bit string.

The FSBday attack uses 16 lists to solve this particular 48-sum problem. Note that
16 is the largest power of 2 dividing 48.
Each list entry will be the sum of three columns coming from one and a half blocks.
This ensures that no overlaps occur, i.e., more than two columns coming from one
matrix block in the end. In order to estimate the complexity of the generalized
birthday attack for FSB48 assume that taking sums of the columns ofH does not bias
the distribution of 192-bit strings. Applying Wagner’s attack in a straightforward
way means that each list contains about 2⌈192/5⌉ entries. Using the usual randomness
assumption clamping away 39 bits in each step should yield one collision after one
run of the tree algorithm.
The algorithm builds 16 lists containing 192-bit strings each being the sum of three
distinct columns of the matrix H . Each triple of three columns is selected from one
and a half blocks of H in the following way:

Remark 9.15 (Constructing lists). List L0,0 contains the sums of columns i0, j0,
k0, where columns i0 and j0 come from the first block of 214 columns, and column k0
is picked from the following block with the restriction that it is taken from the first
half of it. There are about 227 possible sums of two columns i0 and j0 coming from
the first block. These two columns are then added to all possible columns k0 coming
from the first 213 elements of the second block of the matrix H . The resulting list
L0,0 contains about 240 elements.
Note that by splitting every second block in half several solutions of the 48-sum
problem are neglected. For example, a solution involving two columns from the first
half of the second block cannot be found by this algorithm. This design choice is
reasonable since fewer lists would nevertheless require more storage and a longer
precomputation phase to build the lists.
The second list L0,1 contains sums of columns i1, j1, k1, where column i1 is picked
from the second half of the second block of H and j1 and k1 come from the third
block of 214 columns. This again yields about 240 elements.
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The lists L0,2, L0,3,. . . , L0,15 are constructed in a similar way.

For each list more than twice the amount needed for a straightforward attack is
generated in a precomputation step. In order to reduce the amount of data for the
following steps note that about 240/4 elements are likely to be zero on their left-most
two bits. Clamping those two bits away should thus yield a list of 238 bit strings.
As the left-most two bits of the list elements are known they can be ignored and
the list elements can be seen as 190-bit strings. A straightforward application of
Wagner’s attack to 16 lists with about 2190/5 elements is expected to yield a collision
after completing the tree algorithm.

Remark 9.16 (Note on complexity in the FSB proposal). Given the parameters n,
w, and r for the matrixH the FSB proposal estimates the complexity of a generalized
birthday attack by first choosing the parameter i dictating the number of lists in the
tree algorithm; this choice is done following a simpler version of the formula given
in [AFS05], namely

r

i
≤ w

2i−1
log2

((
n
w

2

)

+ 1

)

.

This formula bounds the number of prospective list entries 2r/i from above by all
possible 2-regular words coming from w/2i−1 blocks of length n/w. We comment
that this is a good rule of thumb but that storage limitations might force attackers
to be more flexible in their choice of list sizes, choice of how to group blocks (even
to split blocks as we suggested above), the number of bits to be clamped on each
level, etc. The SHA-3 proposal is even cruder in its suggestions and does not con-
sider the number of regular words but in general the number of weight-2w words as
an upper bound when choosing parameters for generalized birthday attacks. After
a precomputation consideration the SHA-3 proposal [AFG+09] estimates the com-
plexity of a generalized birthday attack as O(2r/ir) where i is chosen according to
a crude version of the formula above. We comment that this does not take storage
into account, and in general is an underestimate of the work required by Wagner’s
algorithm. We will show in the following that attacks of this type against FSB are
more difficult than claimed by the FSB designers.

9.3.2 Attack strategy

This section discusses the necessary measures for mounting the attack on the Coding
and Cryptography Computer Cluster (CCCC) at Technische Universiteit Eindhoven.
We first consider the storage required for one list entry.
The number of bytes required to store one list entry depends on the representation of
the entry. This section considers four different ways of representing an entry which
will be explained in the following.

Remark 9.17 (Value-only representation). The obvious way of representing a list
entry is as a 192-bit string, the sum of columns of the matrix. Bits which are known
to be zero do not have to be stored, so on each level of the tree the number of bits
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per entry decreases by the number of bits clamped on the previous level. Note that
the value of the entry is not of any interest since a successful attack will produce
the all-zero bit string; the goal is to find the column positions in the matrix that
lead to this all-zero value. However, Section 9.3.4 will show that computations only
involving the value can be useful if the attack has to be run multiple times due to
storage restrictions.

Remark 9.18 (Value-and-positions representation). If enough storage is available
positions in the matrix can be stored alongside the value.

Remark 9.19 (Compressed positions). Instead of storing full positions one can save
storage by only storing, e.g., positions modulo 256. After the attack has successfully
finished the full position information can be computed by checking which of the
possible positions lead to the appropriate intermediate results on each level.

Remark 9.20 (Dynamic recomputation). In the case that full positions are kept
the value of the sum of the corresponding values does not have to be stored. Every
time the value (or parts of it) is needed it can be dynamically recomputed from the
positions. In each level the size of a single entry doubles (because the number of
positions doubles), the expected number of entries per list remains the same but the
number of lists halves, so the total amount of data is the same on each level when
using dynamic recomputation. As discussed in the previous section there are 240

possibilities to choose columns to produce entries of a list, so positions on level 0
can be encoded using 40 bits (5 bytes).

Observe that representations can be switched during the computation if at some
level another representation becomes more efficient: we can switch from one of the
above to compressed positions and we can switch from any other representation
to value-only representation. The FSBday implementation switches from dynamic
recomputation to value-only representation; it omits the possibility of compressed
positions and value-and-positions representation.

9.3.3 What list sizes can be handled?

To estimate the storage requirements it is convenient to consider dynamic recompu-
tation (storing positions only) because in this case the amount of required storage is
constant over all levels and this representation has the smallest memory consumption
on level 0.
As described before the attack starts with 16 lists of size 238, each containing bit
strings of length r′ = 190. However, storing 16 lists with 238 entries, each entry
encoded in 5 bytes requires 20 TB of storage space.
The computer cluster used for the attack consists of 8 nodes with a storage space
of 700 GB each1. The goal is to adapt the generalized birthday attack to cope with
total storage limited to 5.5 TB.

1Units such as GB, TB, PB and EB are always assumed to have base 1024 instead of 1000. In
particular, this chapter assumes 700 GB as the size of a hard disk advertised as 750 GB.
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The 16 lists on Level 0 need at least 5 bytes per list entry in order to encode positions;
in order to store 16 lists on the cluster at most 5.5 · 240/24/5 = 1.1 × 236 entries
per list can be allowed. Note that some of the disk space is used for the operating
system and so a straightforward implementation would use lists of size 236. First
computing one half tree and switching to compressed-positions representation on
level 2 would still not allow us to use lists of size 237.
At the beginning for each list 240 entries are generated and 4 bits are clamped
following [Ber07] resulting in 236 values. These values have a length of 188 bits
represented through 5 bytes holding the positions from the matrix. Clamping 36 bits
in each of the 3 steps leaves two lists of length 236 with 80 nonzero bits. A collision
can be expected after about 256.5 runs of the attack following Remark 9.12.
The only way of increasing the list size to 237 and thus reducing the number of runs
is to use value-only representation on higher levels.

9.3.4 Clamping constants and collision computing

The main idea of the attack strategy is to distinguish between the task of

• finding clamping constants that yield a final collision, and

• the task of actually computing the collision.

The following remarks outline this idea.

Remark 9.21 (Finding appropriate clamping constants). The idea is to find a
particular set of clamping constants producing a collision. For this task it is not
necessary to store the positions as the question is only whether the chosen clamping
constants yield a collision or not. Whenever storing the value needs less space than
storing positions one can thus compress entries by switching representation from
positions to values. As a side effect this speeds up the computations because less
data has to be loaded and stored.

Starting from lists L0,0, . . . , L0,7, each containing 237 entries first list L3,0 is computed
on 8 nodes (see Figure 9.3). This list has entries with 78 remaining bits each. The
attack implementation presorts these entries on hard disk according to 9 bits that
do not have to be stored. Another 3 bits are determined by the node holding the
data so only 66 bits or 9 bytes of each entry have to be stored, yielding a total
storage requirement of 1152 GB versus 5120 GB necessary for storing entries in
positions-only representation.
Continue with the computation of list L2,2, which has entries of 115 remaining bits.
Again 9 of these bits do not have to be stored due to presorting, 3 are determined
by the node, so only 103 bits or 13 bytes have to be stored, yielding a storage
requirement of 1664 GB instead of 2560 GB for uncompressed entries.
After these lists have been stored persistently on disk, the attack proceeds with the
computation of list L2,3, then L3,1 and finally check whether L4,0 contains at least
one element. These computations require another 2560 GB.
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Therefore the total amount of storage sums up to 1152 GB + 1664 GB + 2560 GB
= 5376 GB; obviously all data fits onto the hard disk of the 8 nodes.
If a computation with given clamping constants is not successful, only the compu-
tation of L2,3 is repeated; this time with different clamping constants. The lists L3,0

and L2,2 do not have to be computed again. All combinations of clamping values for
lists L0,12 to L0,15 summing up to 0 are allowed. Therefore there are a large number
of valid clamp-bit combinations.
With 37 bits clamped on every level and 3 clamped through precomputation there
are 4 uncontrolled bits in the end and therefore, according to Remark 9.12 one should
expect 16.5 runs of this algorithm.

Remark 9.22 (Computing the matrix positions of the collision). After appropriate
clamping constants have been found in the first phase of the attack, the second phase
recomputes lists L3,0 and L3,1 without compression to obtain the matrix positions.
For this task only positions are stored which requires dynamic recomputation of
the corresponding values. On level 0 and level 1 this is the most space-efficient
approach and no significant speedup is expected from switching to compressed-
positions representation on higher levels. In total one half-tree computation requires
5120 GB of storage, hence, they have to be performed one after the other on 8 nodes.

9.4 Results and evaluation

Niederhagen and Schwabe implemented the FSB48 attack which was successfully
carried out at Technische Universiteit Eindhoven. The code can be found at http://
www.polycephaly.org/fsbday. This section shows the results and discusses the
security analysis in the FSB proposal.

9.4.1 Cost estimates and measurements

This section presents the estimates, before starting the attack, of the amount of
time that the attack would need; measurements of the amount of time actually
consumed by the attack; and comments on how different amounts of storage would
have changed the attack time.
The estimates for the time of the attack are the following.

• (Phase one) As described before the first major step is to compute a set of
clamping values which leads to a collision. In this first step entries are stored
by positions on level 0 and 1 and from level 2 on list entries consist of values.

Computation of list L3,0 takes about 32 hours and list L2,2 about 14 hours,
summing up to 46 hours. These computations need to be done only once.

The time needed to compute list L2,3 is about the same as for L2,2 (14 hours),
list L3,1 takes about 4 hours and checking for a collision in lists L3,0 and L3,1

on level 4 about another 3.5 hours, summing up to about 21.5 hours. The

http://www.polycephaly.org/fsbday
http://www.polycephaly.org/fsbday
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expected value of repetitions of these steps is 16.5 and we thus expected them
to take about 355 hours.

• (Phase two) Finally, computing the matrix positions after finding a collision
requires recomputation with uncompressed lists. Note that the comparison of
the final two lists L3,0 and L3,1 can be aborted as soon as a collision is found.
In the worst case this computation with uncompressed (positions-only) entries
takes 33 hours for each half-tree, summing up to 66 hours.

• (Total) Before starting the attack we expected to find a collision for the FSB48

compression function using the cluster in 467 hours or about 19.5 days.

In the end the FSBday attack found successful clamping constants after only five
iterations (instead of the expected 16.5). In total the first phase of the attack took
5 days, 13 hours and 20 minutes.
Recomputation of the positions in L3,0 took 1 day, 8 hours and 22 minutes and
recomputation of the positions in L3,1 took 1 day, 2 hours and 11 minutes. In total
the attack took 7 days, 23 hours and 53 minutes.

Remark 9.23 (Output). The matrix used in the attack is the pseudo-random ma-
trix defined in Remark 9.6. The FSBday attack found that matrix positions (734,
15006, 20748, 25431, 33115, 46670, 50235, 51099, 70220, 76606, 89523, 90851, 99649,
113400, 118568, 126202, 144768, 146047, 153819, 163606, 168187, 173996, 185420,
191473 198284, 207458, 214106, 223080, 241047, 245456, 247218, 261928, 264386,
273345, 285069, 294658, 304245, 305792, 318044, 327120, 331742, 342519, 344652,
356623, 364676, 368702, 376923, 390678) yield a collision.

9.4.2 Time-storage tradeoffs

As described in Section 9.3, the main restriction on the attack strategy was the total
amount of background storage.
Given 10496 GB of storage at hand the attack could have been started with lists
of size 238, again using the compression techniques described in Section 9.3. As
described in Section 9.3 this would give exactly one expected collision in the last
merge step and thus reduce the expected number of required runs to find the right
clamping constants from 16.5 to 1.58. With a total storage of 20 TB a straightfor-
ward Wagner attack without compression could be carried out; this would eliminate
the need to recompute two half trees at the end.
Increasing the size of the background storage even further would eventually allow
to store list entry values alongside the positions and thus eliminate the need for
dynamic recomputation. However, the bottleneck of the performance of the attack
is the hard-disk throughput rather than CPU time so this measure is not likely to
yield any improvement of the performance.
On clusters with even less background storage the computation time will (asymptot-
ically) increase by a factor of 16 with each halving of the storage size. For example
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a cluster with 2688 GB of storage can only handle lists of size 236. The attack would
then require (expected) 256.5 computations to find appropriate clamping constants.
Of course the time required for one half-tree computation depends on the amount of
data. As long as the performance is mainly bottlenecked by hard-disk (or network)
throughput the running time is linearly dependent on the amount of data, i.e., a
Wagner computation involving 2 half-tree computations with lists of size 238 is about
4.5 times as fast as a Wagner computation involving 18 half-tree computations with
lists of size 237.

9.4.3 Scalability analysis

The attack described in this chapter including the variants discussed in the previous
section are much more expensive in terms of time and especially memory than a
brute-force attack against the 48-bit hash function FSB48. In conclusion, the FSB
designers overestimated the power of Wagner’s attack for all versions of FSB; not
only FSB48. They assumed that the cost can be estimated by roughly the size of one
of the lists on level 0, i.e., 2r/ir where 2i−1 is the number of lists and r the output
length of the compression function. Schwabe implemented the hash function FSB48

and found a collision by repeatedly producing outputs of the hash function in less
than 1 minute and 20 seconds; see his Ph.D. thesis [Sch11, Section 7.6] for details.
This section gives estimates of the power of Wagner’s attack against the larger
versions of FSB. Table 9.1 gives the parameters of all FSB hash functions.

Table 9.1: Parameters of the FSB variants and estimates for the cost of generalized
birthday attacks against the compression function. For Pollard’s variant the number
of lists is marked with an asterisk ∗. Storage is measured in bytes.

n w r # lists
list bits/ total

time
size entry storage

FSB48 3× 217 24 192 16 238 190 5 · 242 5 · 242

FSB160 7× 218 112 896
16 2127 632 17 · 2131 17 · 2131
16∗ 260 630 9 · 264 9 · 2224

FSB224 221 128 1024
16 2177 884 24 · 2181 24 · 2181
16∗ 260 858 13 · 264 13 · 2343

FSB256 23× 216 184 1472

16 2202 1010 27 · 2206 27 · 2206
16∗ 260 972 14 · 264 14 · 2386
32∗ 256 1024 18 · 260 18 · 2405

FSB384 23× 216 184 1472
16 2291 1453 39 · 2295 39 · 2295
32∗ 260 1467 9 · 265 18 · 2618.5

FSB512 31× 216 248 1987
16 2393 1962 53 · 2397 53 · 2397
32∗ 260 1956 12 · 265 24 · 2863
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A straightforward Wagner attack against FSB160 uses 16 lists of size 2127 containing
elements with 632 bits. The entries of these lists are generated as sums of 10 columns
from 5 blocks, yielding 2135 possibilities to generate the entries. Precomputation
includes clamping of 8 bits. Each entry then requires 135 bits of storage so each
list occupies more than 2131 bytes. For comparison, the largest currently available
storage systems offer a few petabytes (250 bytes) of storage.
To limit the amount of memory one can instead generate, e.g., 32 lists of size 260,
where each list entry is the sum of 5 columns from 2.5 blocks, with 7 bits clamped
during precomputation. Each list entry then requires 67 bits of storage.
Clamping 60 bits in each step leaves 273 bits uncontrolled so the Pollard variant of
Wagner’s algorithm (see Section 9.2.2) becomes more efficient than the plain attack.
This attack generates 16 lists of size 260, containing entries which are the sum of 5
columns from 5 distinct blocks each. This gives us the possibility to clamp 10 bits
through precomputation, leaving B = 630 bits for each entry on level 0.
The time required by this attack is approximately 2224 (see (9.2)). This is substan-
tially faster than a brute-force collision attack on the compression function, but is
clearly much slower than a brute-force collision attack on the hash function, and
even slower than a brute-force preimage attack on the hash function.
Similar statements hold for the other full-size versions of FSB. Table 9.1 gives rough
estimates for the time complexity of Wagner’s attack without storage restriction
and with storage restricted to a few hundred exabytes (260 entries per list). These
estimates only consider the number and size of lists being a power of 2 and the
number of bits clamped in each level being the same. The estimates ignore the time
complexity of precomputation. Time is computed according to (9.1) and (9.2) with
the size of level-0 entries (in bytes) as a constant factor.
Although fine-tuning the attacks might give small speedups compared to the es-
timates, it is clear that the compression function of FSB is oversized, assuming
that Wagner’s algorithm in a somewhat memory-restricted environment is the most
efficient attack strategy.
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Mathématiques de L’IHÉS, 47:33–186, 1977. ISSN 0073–8301. (Cited
on page 51).

[Maz78] Barry Mazur. Rational isogenies of prime degree. Inventiones Mathe-
maticae, 44:129–162, 1978. ISSN 0020–9910. (Cited on page 51).

[MB09] Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece keys
from Goppa codes. In Michael J. Jacobson Jr., Vincent Rijmen, and
Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume
5867 of Lecture Notes in Computer Science, pages 376–392. Springer-
Verlag Berlin Heidelberg, 2009. ISBN 3642054439. (Cited on pages 3,
111, 118, 119, 121, and 128).

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic
coding theory, 1978. Jet Propulsion Laboratory DSN Progress Report
42–44. http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.
PDF. (Cited on pages 3, 71, 79, 81, 98, and 133).

[McK99] James McKee. Subtleties in the distribution of the numbers of points
on elliptic curves over a finite prime field. Journal of the London Math-
ematical Society, 59(2):448–460, 1999. (Cited on pages 47 and 67).

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C.
Williams, editor, CRYPTO ’85, volume 218 of Lecture Notes in Com-
puter Science, pages 417–426. Springer-Verlag Berlin Heidelberg, 1986.
ISBN 3540164634. (Cited on page 2).

[Min07] Lorenz Minder. Cryptography based on error-correcting codes. Ph.D.
thesis, EPFL, no. 3846, 2007. (Cited on page 123).

[MK08] Peter L. Montgomery and Alexander Kruppa. Improved stage 2 to
p±1 factoring algorithms. In Alfred J. van der Poorten and Andreas
Stein, editors, ANTS-VIII, volume 5011 of Lecture Notes in Computer
Science, pages 180–195. Springer-Verlag Berlin Heidelberg, 2008. ISBN
9783540794554. (Cited on page 46).

[Mon83] Peter L. Montgomery. Evaluating recurrences of form Xm+n =
f(Xm, Xn, Xm−n) via Lucas chains. Technical report, 1983. Revised ver-
sion January, 1992. http://cr.yp.to/bib/1992/montgomery-lucas.
ps. (Cited on page 49).

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://cr.yp.to/bib/1992/montgomery-lucas.ps
http://cr.yp.to/bib/1992/montgomery-lucas.ps


186 Bibliography

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods
of factorization. Mathematics of Computation, 48:243–264, 1987. (Cited
on pages 21, 24, 48, 58, and 189).

[Mon92] Peter L. Montgomery. An FFT extension of the elliptic curve method
of factorization. Ph.D. thesis, University of California at Los Angeles,
1992. (Cited on pages 58, 60, and 66).

[MS77] F. Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-
Correcting Codes. Elsevier/North Holland, Amsterdam, 1977. ISBN
0444851933. (Cited on pages 72, 74, 75, 76, and 122).

[MS09] Lorenz Minder and Alistair Sinclair. The extended k-tree algorithm.
In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2009, pages 586–595.
SIAM, 2009. See also newer version [MS10]. (Cited on pages 160
and 186).

[MS10] Lorenz Minder and Alistair Sinclair. The extended k-tree algo-
rithm, 2010. Newer version of [MS09]. http://www.cs.berkeley.edu/
~sinclair/ktree.pdf. (Cited on pages 117 and 186).

[NCBB10] Robert Niebuhr, Pierre-Louis Cayrel, Stanislav Bulygin, and Johannes
Buchmann. On lower bounds for information set decoding over fq. In
Cid and Faugere [CF10], pages 143–157. http://scc2010.rhul.ac.

uk/scc2010-proceedings.pdf. (Cited on page 117).

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic cod-
ing theory. Problems of Control and Information Theory. Problemy
Upravlenija i Teorii Informacii, 15(2):159–166, 1986. ISSN 0370–2529.
(Cited on pages 79 and 121).

[NIS07] NIST – National Institute of Standards and Technology. SHA-3
cryptographic hash algorithm competition, 2007. http://csrc.nist.

gov/groups/ST/hash/ (accessed version March 26, 2011). (Cited on
page 155).

[NPS10] Michael Naehrig, Christiane Peters, and Peter Schwabe. SHA-2 will soon
retire, 2010. http://www.anagram.com/jcrap/Volume_7/. (Cited on
page 155).

[OKS00] Katsuyuki Okeya, Hiroyuki Kurumatani, and Kouichi Sakurai. Elliptic
curves with the Montgomery-form and their cryptographic applications.
In Hideki Imai and Yuliang Zheng, editors, PKC 2000, volume 1751
of Lecture Notes in Computer Science, pages 238–257. Springer-Verlag
Berlin Heidelberg, 2000. ISBN 3540669671. (Cited on page 24).

http://www.cs.berkeley.edu/~sinclair/ktree.pdf
http://www.cs.berkeley.edu/~sinclair/ktree.pdf
http://scc2010.rhul.ac.uk/scc2010-proceedings.pdf
http://scc2010.rhul.ac.uk/scc2010-proceedings.pdf
http://csrc.nist.gov/groups/ST/hash/
http://csrc.nist.gov/groups/ST/hash/
http://www.anagram.com/jcrap/Volume_7/


Bibliography 187

[OS08] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography, chap-
ter in [BBD08], pages 95–145. 2008. (Cited on pages 80, 89, 108, 118,
and 135).

[Ove06] Raphael Overbeck. Statistical decoding revisited. In Lynn Batten and
Reihaneh Safavi-Naini, editors, ACISP 2006, volume 4058 of Lecture
Notes in Computer Science, pages 283–294. Springer-Verlag Berlin Hei-
delberg, 2006. ISBN 3540354581. (Cited on page 87).

[P1300] P1363: Standard specifications for public key cryptography, 2000.
http://grouper.ieee.org/groups/1363/. (Cited on page 32).

[Pat75] Nicholas J. Patterson. The algebraic decoding of Goppa codes. IEEE
Transactions on Information Theory, IT-21:203–207, 1975. (Cited on
pages 76 and 126).

[Pet10] Christiane Peters. Information-set decoding for linear codes over Fq.
In Sendrier [Sen10], pages 81–94. ISBN 978-3-642-12928-5. (Cited on
pages 4, 83, 100, 111, 115, and 127).

[Pip79] Nicholas Pippenger. The minimum number of edges in graphs with pre-
scribed paths. Mathematical Systems Theory, 12:325–346, 1979. ISSN
0025–5661. http://cr.yp.to/bib/entries.html#1979/pippenger.
(Cited on page 91).

[Pol74] John M. Pollard. Theorems on factorization and primality testing. Pro-
ceedings of the Cambridge Philosophical Society, 76:521–528, 1974. ISSN
0305–0041. (Cited on page 48).

[Pol78] John M. Pollard. Monte Carlo methods for index computation (mod
p). Mathematics of Computation, 32(143):918–924, 1978. (Cited on
page 162).

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes.
IRE Transactions on Information Theory, 8(5):5–9, September 1962.
(Cited on pages 3, 85, and 105).

[Rob55] Herbert Robbins. A remark on Stirling’s formula. American Mathemat-
ical Monthly, 62(1):26–29, 1955. ISSN 0002–9890. http://www.jstor.
org/stable/2308012. (Cited on page 103).

[RR] Fabrice Rouillier and Nathalie Revol. The MPFI 1.0 library. http://

perso.ens-lyon.fr/nathalie.revol/mpfi.html, (accessed version
March 26, 2011). (Cited on page 96).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Commu-
nications of the ACM, 21(2):120–126, 1978. (Cited on page 2).

http://grouper.ieee.org/groups/1363/
http://cr.yp.to/bib/entries.html#1979/pippenger
http://www.jstor.org/stable/2308012
http://www.jstor.org/stable/2308012
http://perso.ens-lyon.fr/nathalie.revol/mpfi.html
http://perso.ens-lyon.fr/nathalie.revol/mpfi.html


188 Bibliography

[S+10] William A. Stein et al. Sage Mathematics Software (Version 4.4.3). The
Sage Development Team, 2010. http://www.sagemath.org. (Cited on
pages 22, 56, and 126).

[Sch11] Peter Schwabe. High-Speed Cryptography and Cryptanalysis. Ph.D.
thesis, Eindhoven University of Technology, Netherlands, 2011. (Cited
on pages 155 and 170).

[Sen00] Nicolas Sendrier. Finding the permutation between equivalent linear
codes: the support splitting algorithm. IEEE Transactions on Informa-
tion Theory, 46(4):1193–1203, 2000. (Cited on page 127).

[Sen02] Nicolas Sendrier. On the security of the McEliece public-key cryptosys-
tem. In Blaum et al. [BFvT02], pages 141–163. ISBN 1402070799. Pro-
ceedings of Workshop honoring Prof. Bob McEliece on his 60th birthday.
(Cited on page 98).

[Sen10] Nicolas Sendrier, editor. Post-Quantum Cryptography, Third Inter-
national Workshop, PQCrypto 2010, Darmstadt, Germany, May 25–
28, 2010. Proceedings, volume 6061 of Lecture Notes in Computer Sci-
ence. Springer-Verlag Berlin Heidelberg, 2010. ISBN 978-3-642-12928-5.
(Cited on pages 175 and 187).

[Sha48] Claude E. Shannon. A mathematical theory of communication.
Bell Systems Technical Journal, 27:379–423,623–656, 1948. http://

cm.bell-labs.com/cm/ms/what/shannonday/paper.html. (Cited on
page 71).

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete loga-
rithms and factoring. In Shafi Goldwasser, editor, 35th annual IEEE
symposium on the foundations of Computer Science, pages 124–134.
IEEE, 1994. ISBN 0-8186-6580-7. See newer [Sho97]. (Cited on page 2).

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):
1484–1509, 1997. (Cited on page 188).

[Sil86] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of
Graduate texts in mathematics. Springer-Verlag, New York, 1986. ISBN
0387962034. (Cited on pages 9, 50, 51, and 58).

[SKHN76] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko
Namekawa. Further results on goppa codes and their applications to
constructing efficient binary codes. IEEE Transactions on Information
Theory, 22(5):518–526, 1976. ISSN 0018–9448. (Cited on pages 121,
122, and 123).

http://www.sagemath.org
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html


Bibliography 189

[SRY07] Kannan Srinathan, Chandrasekaran Pandu Rangan, and Moti Yung,
editors. Progress in Cryptology - INDOCRYPT 2007, 8th International
Conference on Cryptology in India, Chennai, India, December 9–13,
2007, Proceedings, volume 4859 of Lecture Notes in Computer Science.
Springer-Verlag Berlin Heidelberg, 2007. ISBN 978–3–540–77025–1.
(Cited on pages 174 and 182).

[SS92] Vladimir M. Sidelnikov and Sergey O. Shestakov. On insecurity of cryp-
tosystems based on generalized Reed-Solomon codes. Discrete Mathe-
matics and Applications, 2:439–444, 1992. (Cited on pages 79 and 121).

[Ste89] Jacques Stern. A method for finding codewords of small weight. In
Gérard D. Cohen and Jacques Wolfmann, editors, Coding theory and
applications, volume 388 of Lecture Notes in Computer Science, pages
106–113. Springer-Verlag Berlin Heidelberg New York, 1989. ISBN
0387516433. (Cited on pages 83, 85, 86, 87, 92, 102, 103, and 106).

[Sti09] Henning Stichtenoth. Algebraic Function Fields and Codes, volume 254
of Graduate texts in mathematics. Springer-Verlag, Berlin, Heidelberg,
2009. ISBN 3642095569. 2nd edition. (Cited on page 9).

[Suy85] Hiromi Suyama. Informal preliminary report (8), 1985. Cited in [Bre86]
as personal communication and in [Mon87]. (Cited on page 58).

[SW93] Robert D. Silverman and Samuel S. Wagstaff, Jr. A practical analysis
of the elliptic curve factoring algorithm. Mathematics of Computation,
61:445–462, 1993. (Cited on page 66).

[Thu73] Edward G. Thurber. On addition chains l(mn) ≤ l(n) − b and lower
bounds for c(r). Duke Mathematical Journal, 40:907–913, 1973. (Cited
on page 36).

[VDvT02] Eric R. Verheul, Jeroen M. Doumen, and Henk C. A. van Tilborg.
Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the
McEliece public-key cryptosystem. In Blaum et al. [BFvT02], pages
99–119. ISBN 1402070799. Proceedings of Workshop honoring Prof.
Bob McEliece on his 60th birthday. (Cited on page 80).

[vT90] Johan van Tilburg. On the McEliece public-key cryptosystem. In Shafi
Goldwasser, editor, CRYPTO ’88, volume 403 of Lecture Notes in Com-
puter Science, pages 119–131. Springer-Verlag Berlin Heidelberg, 1990.
ISBN 3540971963. (Cited on pages 90, 94, and 110).

[vT94] Johan van Tilburg. Security-analysis of a class of cryptosystems based
on linear error-correcting codes. Ph.D. thesis, Eindhoven University of
Technology, Netherlands, 1994. (Cited on pages 90, 94, and 102).



190 Bibliography

[Wag02a] David Wagner. A generalized birthday problem (extended abstract).
In Moti Yung, editor, CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 288–304. Springer-Verlag Berlin Heidelberg,
2002. ISBN 354044050X. See also newer version [Wag02b]. (Cited on
pages 117, 155, 158, and 190).

[Wag02b] David Wagner. A generalized birthday problem (extended abstract)
(long version), 2002. See also older version [Wag02a]. http://www.
cs.berkeley.edu/~daw/papers/genbday.html. (Cited on pages 127
and 190).

[Wir88] Michael Wirtz. On the parameters of Goppa codes. IEEE Transactions
on Information Theory, 34(5):1341–1343, 1988. ISSN 0018-9448. (Cited
on page 123).

[Z+10] Paul Zimmermann et al. GMP-ECM (Version 6.3). INRIA Project
GMP-ECM (Elliptic Curve Method), 2010. http://ecm.gforge.

inria.fr/ (accessed version March 26, 2011). (Cited on pages 45
and 47).

[ZD06] Paul Zimmermann and Bruce Dodson. 20 Years of ECM. In Florian
Hess, Sebastian Pauli, and Michael E. Pohst, editors, ANTS VII, volume
4076 of Lecture Notes in Computer Science, pages 525–542. Springer-
Verlag Berlin Heidelberg, 2006. ISBN 3540360751. (Cited on pages 45,
48, and 58).

[Zima] Paul Zimmermann. 50 largest factors found by ECM. http://www.

loria.fr/~zimmerma/records/top50.html (accessed version March
26, 2011). (Cited on page 45).

[Zimb] Paul Zimmermann. Record factors found by Pollard’s p − 1 method.
http://www.loria.fr/~zimmerma/records/Pminus1.html (accessed
version March 26, 2011). (Cited on page 47).

http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://ecm.gforge.inria.fr/
http://ecm.gforge.inria.fr/
http://www.loria.fr/~zimmerma/records/top50.html
http://www.loria.fr/~zimmerma/records/top50.html
http://www.loria.fr/~zimmerma/records/Pminus1.html


Index

Θ-notation, 102

alternant code, 76
alternant decoder, 125
Atkin–Morain family of elliptic curves,

58–59

B-smooth, see smooth
b-bit security, 1
ball, see Hamming distance
ball-collision decoding, 135–136

asymptotic exponent of the suc-
cess probability, 144

asymptotic iteration-cost exponent,
145

asymptotic parameter space, 147
asymptotic success probability ex-

ponent, 145
geometric interpretation, 135
overall asymptotic cost exponent,

145–146
partial columns, 137
partial syndrome, 137
success probability, 140
total cost, 140
visualization, 136–137

binary entropy function, 75
birationally equivalent, 13
birthday paradox, 158
birthday problem, 158
bit swapping, 90

CCA2 security, 80
clamping, see Wagner’s algorithm, 161
clamping value, 160
classical Goppa code, see Goppa code
clock group, 10

code
binary, 72
codimension, 156
dimension, 72
length, 72
linear code, 72
[n, k] code, 72
q-ary, 72
subfield subcode, 76

codeword, 72
2-regular, 157

collision decoding, 87, 137
overall asymptotic cost exponent,

147
complete, 12

decoding algorithm, 73
discrete-logarithm problem, 1
distance, see Hamming distance
DLP, see discrete-logarithm problem
double-and-add algorithm, 34
double-base chain, 35
doubling formulas, see Edwards curve

ECC, see elliptic-curve cryptography
ECM, see Elliptic-Curve Method
Edwards coordinates, see Edwards curve
Edwards curve, 11

addition law, 12
completeness, 12
doubling, 25, 26
dual addition law, 15
inverted coordinates, 15, 26
j-invariant, 12
projective coordinates, 15
quintupling, 25, 28–29
standard coordinates, 16

191



192 Index

tripling, 25, 28
twisted, see twisted Edwards curve

Edwards form, see Edwards curve
EECM-MPFQ, 45
EFD, see Explicit-Formulas Database
elliptic curve, 9
elliptic-curve cryptography, 2
Elliptic-Curve Method, 45
entropy function, see binary entropy

function
error fraction, 75
error vector, 73
error-correcting capability, 74
Explicit-Formulas Database, 31

Fast Syndrome Based hash function,
see FSB

Finiasz–Sendrier lower bound, 101
fixed-distance decoding, 74
FSB, 155, 156

block, 156
collision, 157, 163
compression function, 156
FSB48, 157
input of the compression function,

156
matrix, 157
output of the compression func-

tion, 156
preimage, 156

FSBday, 155

Gaussian elimination, 89
generalized birthday problem, 158
generalized Lee–Brickell algorithm, see

Lee–Brickell algorithm
generalized Reed–Solomon code, 76
generalized Stern algorithm, see Stern’s

algorithm
generator matrix, 72

systematic form, 72
Gilbert–Varshamov distance, 75
GMP-ECM, 45
Goppa code, 76

dimension, 76

irreducible, 76
minimum distance, 76
support, 76
wild, 122

Goppa polynomial, 76

Hamming distance, 72
ball, 73
radius, 73

Hamming weight, 72
height of a point, 58
height of a rational number, 58
homogeneous, 15
homogenized polynomial, 15

information rate, see rate
information set, 73
information symbols, 73
information-set decoding, 84

adaptive information sets, 86
cost exponent, 102
plain, 84
success probability, 85

Jacobian coordinates, 32
addition, 32
doubling, 32
mixed addition, 32
readdition, 32
tripling, 32

k-sum problem, 158

Lee–Brickell algorithm, 85
asymptotic cost, 103, 105–106
generalization to Fq, 112
success probability, 85

low-weight-word algorithm, 81

Mazur’s theorem, 51
McEliece cryptosystem, 78

ciphertext, 79
decryption, 78
encryption, 78
public key, 78
public system parameters, 78



Index 193

public-key size, 81
secret key, 78
structural attack, 81

minimum distance, 72
mixed addition, 25
Montgomery curve, 21

Montgomery coordinates, 49
Mordell’s theorem, 50

Niederreiter cryptosystem, 79
decryption, 80
encryption, 79
public key, 79
public-key size, 81
secret key, 79

norm
see polynomial norm, 124

parity–check matrix, 72
parity-check symbols, 73
Patterson decoding, 76
Pollard iteration, 162
Pollard’s (p− 1)-method, 46
polynomial norm, 124
post-quantum cryptography, 2
projective coordinates, 15
public-key cryptography, 1

private key, 1
public key, 1

quadratic twist, see twist of an elliptic
curve

quintupling formulas, see Edwards curve

radius, see Hamming distance
rank, 50
rate, 75
Reed–Solomon code, see generalized

Reed–Solomon code
regular word, 156
RSA, 2

single-base chain, 35
sliding-window method, 36
smooth, 46

smoothness bound, 46

stage 1, 46–47
Stern’s algorithm, 86

asymptotic cost, 106
birthday speedup, 100, 113–114
collision handling, 88
generalization to Fq, 113
intermediate sums, 92
list building, 88
success probability, 94
updating the matrix, 88
visualization, 86

strongly unified, 12
structural attack, 81
Sugiyama et al.’s theorem, 123
support, see Goppa code
Suyama family of elliptic curves, 59
syndrome, 73
syndrome-decoding problem, 74
systematic form, 72

torsion group, 50
tree algorithm, see Wagner’s algorithm
tripling formulas, see Edwards curve
twist of an elliptic curve, 13
twisted Edwards curve, 13–14

completed, 16
dual addition law, 15
extended coordinates, 16, 27
inverted twisted coordinates, 15–

16, 27
j-invariant, 14

Wagner’s algorithm, 159
clamped bits, 159, 161
clamping, 159, 161
merge operation, 159
uncontrolled bits, 161

Weierstrass form, 9
weight, see Hamming weight
wild Goppa code, 122

alternant decoder, 125
minimum distance, 122
terminology, 123–124

wild McEliece cryptosystem, 122



194 Index



List of Symbols

Elliptic curves

E(Fq) rational points on E over Fq, (defined on page 2)

E(k) rational points on E over k, (defined on page 50)

E(Q) rational points on E over Q, (defined on page 47)

Etor(Q) group of finite order in E(Q), (defined on page 50)

Ed Edwards curve with coefficient d, (defined on page 12)

EE,a,d twisted Edwards curve with coefficients a and d, (defined on
page 13)

E E,a,d completed twisted Edwards curve with coefficients a and d,
(defined on page 16)

Ehom
E,a,d homogenized twisted Edwards equation, (defined on page 15)

EM,A,B Montgomery curve with coefficients A and B, (defined on
page 21)

Fq finite field with q elements, (defined on page 2)

log natural logarithm (base e = exp(1)), (defined on page 49)

log2 base-2 logarithm, (defined on page 2)

[m] multiplication-by-m map, (defined on page 2)

Cost of elliptic-curve arithmetic

a cost of a field addition, (defined on page 25)

D cost of a multiplication by a small constant factor, (defined
on page 25)

I cost of a field inversion, (defined on page 25)

195



196 List of Symbols

M cost of a field multiplication, (defined on page 25)

S cost of a squaring, (defined on page 25)

Code-based cryptography

α(R,W ) (1 − R −W ) log2(1 − R −W ) − (1 − R) log2(1 − R) − (1 −
W ) log2(1−W ), (defined on page 102)

β(R,W )
√

(1− R−W )/((1− R)(1−W )), (defined on page 102)

B(P,Q, L) asymptotic exponent of the success probability of ball-collision
decoding, (defined on page 145)

〈C, y〉 linear code spanned by C and y, (defined on page 81)

C(P,Q, L) asymptotic cost exponent of one iteration of ball-collision de-
coding, (defined on page 145)

dist(·, ·) Hamming distance, (defined on page 72)

D(P, 0, L) asymptotic cost exponent of collision decoding (overall cost),
(defined on page 147)

D(P,Q, L) asymptotic cost exponent of ball-collision decoding (overall
cost), (defined on page 145)

Ga unique row of G−1
I G in which the column indexed by a ∈ I

has a 1, (defined on page 84)

GI restriction of the generator matrix G to the positions indexed
by a set I, (defined on page 73)

Γq(a1, . . . , an, g) Goppa code with support elements a1, . . . , an and Goppa poly-
nomial g, (defined on page 76)

Γqm(a1, . . . , an, g) linear code over Fqm containing Γq(a1, . . . , an, g), (defined on
page 76)

Γq(a1, . . . , an, g
q−1) wild Goppa code, (defined on page 122)

H2 binary entropy function, (defined on page 75)

L(k, p) L(k, p) =
∑p

i=1

(
k
i

)
, (defined on page 92)

LBCost(n, k, w, p) model of the average time used by the Lee–Brickell algorithm,
(defined on page 103)

LBErr(n, k, w, p) error term; see analyses of LBPr(n, k, w, p) and
LBCost(n, k, w, p), (defined on page 104)



List of Symbols 197

LBPr(n, k, w, p) success chance of the first iteration of the Lee–Brickell algo-
rithm, (defined on page 85)

Lj,k list k on level j in Wagner’s generalized birthday algorithm,
(defined on page 159)

log natural logarithm (base e = exp(1)), (defined on page 109)

log2 base-2 logarithm, (defined on page 75)

logq base-q logarithm, (defined on page 116)

STCost(n, k, w, ℓ, p) model of the average time used by Stern’s algorithm, (defined
on page 106)

STPr(n, k, w, ℓ, p) success chance of the first iteration of the plain Stern algo-
rithm, (defined on page 94)

STErr(n, k, w, ℓ, p) error term; see analyses of STPr(n, k, w, ℓ, p) and
STCost(n, k, w, ℓ, p), (defined on page 107)

Qt transpose of a matrix Q, (defined on page 72)

vt transpose of a row vector v, (defined on page 72)

wt(·) Hamming weight, (defined on page 72)

yI restriction of y to the positions indexed by a set I, (defined
on page 73)



198 List of Symbols



Summary

Curves, Codes, and Cryptography

This thesis deals with two topics: elliptic-curve cryptography and code-based cryp-
tography.

In 2007 elliptic-curve cryptography received a boost from the introduction of a new
way of representing elliptic curves. Edwards, generalizing an example from Euler
and Gauss, presented an addition law for the curves x2 + y2 = c2(1 + x2y2) over
non-binary fields. Edwards showed that every elliptic curve can be expressed in
this form, sometimes at the cost of going to a finite extension of the original field.
Bernstein and Lange found fast explicit formulas for addition and doubling in coor-
dinates (X : Y : Z) representing (x, y) = (X/Z, Y/Z) on these curves, and showed
that these explicit formulas save time in elliptic-curve cryptography. It is easy to see
that all of these curves are isomorphic to curves x2 + y2 = 1+ dx2y2 which now are
called “Edwards curves” and whose shape covers considerably more elliptic curves
over a finite field than x2 + y2 = c2(1 + x2y2).

In this thesis the Edwards addition law is generalized to cover all curves ax2 + y2 =
1+dx2y2 which now are called “twisted Edwards curves.” The fast explicit formulas
for addition and doubling presented here are almost as fast in the general case as
they are for the special case a = 1. This generalization brings the speed of the
Edwards addition law to every Montgomery curve.

Tripling formulas for Edwards curves can be used for double-base scalar multiplica-
tion where a multiple of a point is computed using a series of additions, doublings,
and triplings. The use of double-base chains for elliptic-curve scalar multiplication
for elliptic curves in various shapes is investigated in this thesis. It turns out that
not only are Edwards curves among the fastest curve shapes, but also that the speed
of doublings on Edwards curves renders double bases obsolete for this curve shape.

Elliptic curves in Edwards form and twisted Edwards form can be used to speed up
the Elliptic-Curve Method for integer factorization (ECM). We show how to con-
struct elliptic curves in Edwards form and twisted Edwards form with large torsion
groups which are used by the EECM-MPFQ implementation of ECM.

Code-based cryptography was invented by McEliece in 1978. The McEliece public-key
cryptosystem uses as public key a hidden Goppa code over a finite field. Encryption
is remarkably fast (a matrix-vector multiplication). The McEliece cryptosystem



is rarely used in implementations. The main complaint is that the public key is
too large. The McEliece cryptosystem recently regained attention with the ad-
vent of post-quantum cryptography, a new field in cryptography which deals with
public-key systems without (known) vulnerabilities to attacks by quantum com-
puters. McEliece’s system is one of them. In this thesis we further investigate
the McEliece cryptosystem by improving attacks against it and by coming up with
smaller-key variants.

McEliece proposed to use binary Goppa codes. For these codes the most effective
attacks rely on information-set decoding. In this thesis we present an attack devel-
oped together with Daniel J. Bernstein and Tanja Lange which uses and improves
Stern’s idea of collision decoding. This attack is faster by a factor of more than 150
than previous attacks, bringing it within reach of a moderate computer cluster. In
fact, we were able to extract a plaintext from a ciphertext by decoding 50 errors in
a [1024, 524] binary code. The attack should not be interpreted as destroying the
McEliece cryptosystem. However, the attack demonstrates that the original param-
eters were chosen too small. Building on this work the collision-decoding algorithm
is generalized in two directions. First, we generalize the improved collision-decoding
algorithm for codes over arbitrary fields and give a precise analysis of the running
time. We use the analysis to propose parameters for the McEliece cryptosystem
with Goppa codes over fields such as F31. Second, collision decoding is generalized
to ball-collision decoding in the case of binary linear codes. Ball-collision decoding is
asymptotically faster than any previous attack against the McEliece cryptosystem.

Another way to strengthen the system is to use codes with a larger error-correction
capability. This thesis presents“wild Goppa codes”which contain the classical binary
Goppa codes as a special case. We explain how to encrypt and decrypt messages in
the McEliece cryptosystem when using wild Goppa codes. The size of the public key
can be reduced by using wild Goppa codes over finite fields of moderate size. We
evaluate the security of the “Wild McEliece” cryptosystem against our generalized
collision attack for codes over finite fields.

Code-based cryptography deals not only with public-key cryptography: a code-based
hash function “FSB”was submitted to NIST’s SHA-3 competition, a competition to
establish a new standard for cryptographic hashing. Wagner’s generalized birthday
attack is a generic attack which can be used to find collisions in the compression
function of FSB. However, applying Wagner’s algorithm is a challenge in storage-
restricted environments. The FSBday project showed how to successfully mount the
generalized birthday attack on 8 nodes of the Coding and Cryptography Computer
Cluster (CCCC) at Technische Universiteit Eindhoven to find collisions in the toy
version FSB48 which is contained in the submission to NIST.
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