
Twisted Edwards Curves Revisited

Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson
Information Security Institute,

Queensland University of Technology, QLD, 4000, Australia
{h.hisil, kk.wong, g.carter, e.dawson}@qut.edu.au

A version of this paper appears in Advances in Cryptology - ASIACRYPT 2008, LNCS Vol. 5350, pp. 326–343. J. Pieprzyk ed.,

Springer-Verlag, 2008.

Abstract

This paper introduces fast algorithms for performing group operations on twisted
Edwards curves, pushing the recent speed limits of Elliptic Curve Cryptography
(ECC) forward in a wide range of applications. Notably, the new addition algorithm
uses1 8M for suitably selected curve constants. In comparison, the fastest point
addition algorithms for (twisted) Edwards curves stated in the literature use 9M +
1S. It is also shown that the new addition algorithm can be implemented with
four processors dropping the effective cost to 2M. This implies an effective speed
increase by the full factor of 4 over the sequential case. Our results allow faster
implementation of elliptic curve scalar multiplication. In addition, the new point
addition algorithm can be used to provide a natural protection from side channel
attacks based on simple power analysis (SPA).

Keywords: Efficient elliptic curve arithmetic, unified addition, side channel attack,
SPA.

1 Introduction

Edwards curves are drawing increasing attention with their low cost and memory friendly
arithmetic in cryptographic applications. Recently, there has been a rapid development
of Edwards curves and their use in cryptology. An outline of the previous work that
closely relates to twisted Edwards curves is as follows.

• Building on the historical results of Euler and Gauss, Edwards introduced a normal
form for elliptic curves and stated the addition law in [14]. These curves are defined
by x2 + y2 = c2 + c2x2y2.

• Bernstein and Lange introduced a more general version of these curves defined by
x2 + y2 = c2(1 + dx2y2) or simply x2 + y2 = 1 + dx2y2 together with the first
algorithms for computing the group operations on projective coordinates in [5].
For instance, the addition costs 10M + 1S + 1D with c = 1. Here, and in the
rest of this paper, multiplication by a curve constant is denoted by D. With the
definitions in [5], these curves are today known as the Edwards curves.

1M: Field multiplication, S: Field squaring, I: Field inversion.

1

• Bernstein and Lange introduced the inverted Edwards coordinates in [6] which
reduce the cost for the group operations on Edwards curves. For instance, the
addition costs 9M + 1S + 1D.

• Bernstein, Birkner, Joye, Lange, and Peters introduced twisted Edwards curves
ax2 + y2 = 1 + dx2y2 in [1], a generalization of Edwards curves.

In this paper, the speed of the arithmetic of twisted Edwards curves is increased
by a suitable point representation. The new system is called extended twisted Edwards
coordinates which adds an auxiliary coordinate to twisted Edwards coordinates. Despite
the computational overhead of the additional coordinate, we develop faster ways of per-
forming point addition since the new formulae are composed of polynomial expressions
with lower total degrees. We show that the increase in the number of coordinates comes
with an increase in the level of parallelism which is exploited for further improvements.
We also provide optimizations for the scalar multiplication by mixing extended twisted
Edwards coordinates with twisted Edwards coordinates.

The paper is organized as follows. A review of twisted Edwards curves together with
some new results is given in Section 2. The new point representation is introduced in
Section 3. Several applications of the new achievements are given in Section 4. We draw
our conclusions in Section 5.

2 Twisted Edwards Curves

In what follows some terms related to the group law on elliptic curves will be extensively
used. In particular, the term unified is used to emphasize that point addition formulae
remain valid when two input points are identical, see [10, Section 29.1.2]. Therefore,
unified addition formulae can be used for point doubling. The term complete is used to
emphasize that addition formulae are defined for all inputs, see [5]. The term readdition
is used to emphasize that a point addition has already taken place and some of the
previously computed data is cached, see [5]. The term mixed addition refers to adding
an affine point to a point in some projective representation, see [11]. We adapt the
notation from [11], [5], and [1].

Let K be a field of odd characteristic. In [5], Bernstein and Lange introduce Edwards
curves defined by x2 + y2 = c2(1 + dx2y2) where c, d ∈ K with cd(1 − dc4) 6= 0. In [1],
this form is generalized to twisted Edwards form defined by

EE,a,d : ax2 + y2 = 1 + dx2y2

where a, d ∈ K with ad(a − d) 6= 0. Edwards curves are then a special case of twisted
Edwards curve where a can be rescaled to 1. We next review some formulae regarding
the group law on twisted Edwards curves which will be used with slight modifications
in Section 3.

Affine addition formulae for twisted Edwards curves in [1] (also see [14], [5]):

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
y1y2 − ax1x2

1− dx1y1x2y2

)
= (x3, y3). (1)

The point (0, 1) is the identity element and the point (0,−1) is of order 2. The neg-
ative of a point (x, y) is (−x, y). For further facts such as the resolution of singularities
or the points at infinity or the coverage of these curves or the group structure, we refer
the reader to the original reference [1]. Also see [14], [5], [4], [6], and [3].

2

In [5] (where a = 1) and later in [1], it was proven that if d is not a square in K and
a is a square in K then these formulae are complete. In Theorem 2.1, with reasonable
assumptions, we show that it is possible to prevent exceptions in the addition formulae
even if d is a square in K or a is not a square in K. We should note that this statement
should not be considered as a recommendation for selecting d a square in K and/or a
a non-square in K. The desired properties for a and d may change depending on the
target application. We will recall Theorem 2.1 in Section 4.

Theorem 2.1. Let K be a field of odd characteristic. Let EE,a,d be a twisted Edwards
curve defined over K. Let P = (x1, y1) and Q = (x2, y2) be points on EE,a,d. Assume
that P and Q are of odd order. It follows that 1−dx1x2y1y2 6= 0 and 1+dx1x2y1y2 6= 0.

Proof. In [5] (where a = 1) and later in [1], it is proven that the points at infinity (over
the extension of K where they exist) are of even order. Assume that P and Q are of odd
order. Thus, P , Q and P +Q cannot be the points at infinity. Since the formulae (1) are
complete (see [1]) provided that the points at infinity are not involved, the denominators
of (1); 1− dx1x2y1y2 and 1 + dx1x2y1y2 must be nonzero.

Affine doubling formulae (independent of d) for twisted Edwards curves de-
duced from [1] (also see [5], [2], [3]):

2(x1, y1) =
(

2x1y1

y2
1 + ax2

1

,
y2
1 − ax2

1

2− y2
1 − ax2

1

)
= (x3, y3). (2)

The exceptional cases and how to prevent them are analogous to formulae (1).
Affine addition formulae (independent of d) for twisted Edwards curves adapted

from our preprint [18]: Consider the relations obtained by the curve equation; ax2
1+y2

1 =
1 + dx2

1y
2
1, ax

2
2 + y2

2 = 1 + dx2
2y

2
2. After straight forward eliminations, we express a and

d in terms of x1, x2, y1, y2 as follows,

a =
(x2

1y
2
1 − x2

2y
2
2)− y2

1y
2
2(x2

1 − x2
2)

x2
1x

2
2(y2

1 − y2
2)

, d =
(x2

1 − x2
2)− (x2

1y
2
2 − y2

1x
2
2)

x2
1x

2
2(y2

1 − y2
2)

.

Ignoring any exceptions that can be introduced by these rational expressions, sub-
stitutions in the addition formulae (1) yield

x3 =
x1y2 + y1x2

1 + (x2
1−x2

2)−(x2
1y2

2−y2
1x2

2)

x2
1x2

2(y
2
1−y2

2)
x1y1x2y2

=
x1x2(y2

1 − y2
2)

x1y1 − x2y2 − y1y2(x1y2 − y1x2)

=
x1y1 + x2y2

y1y2 + (x2
1y2

1−x2
2y2

2)−y2
1y2

2(x2
1−x2

2)

x2
1x2

2(y
2
1−y2

2)
x1x2

=
x1y1 + x2y2
y1y2 + ax1x2

,

y3 =
y1y2 − (x2

1y2
1−x2

2y2
2)−y2

1y2
2(x2

1−x2
2)

x2
1x2

2(y
2
1−y2

2)
x1x2

1− (x2
1−x2

2)−(x2
1y2

2−y2
1x2

2)

x2
1x2

2(y
2
1−y2

2)
x1y1x2y2

=
x1y1 − x2y2
x1y2 − y1x2

.

The addition formulae (independent of d) are then as follows,

(x1, y1) + (x2, y2) =
(
x1y1 + x2y2

y1y2 + ax1x2
,
x1y1 − x2y2

x1y2 − y1x2

)
= (x3, y3). (3)

The formulae given by (3) produce the same outputs as the addition formulae (1).
However, these formulae fail for point doubling. In addition, there are exceptional cases
even if d is a not a square in K and a is a square in K. The following theorem states
these points explicitly.

3

Theorem 2.2. Let K be a field of odd characteristic. Let EE,a,d be a twisted Edwards
curve defined over K. Let P = (x1, y1) and Q = (x2, y2) be points on EE,a,d. Assume
that P is fixed. If x1 = 0 or y1 = 0 then y1y2 + ax1x2 = 0 if and only if Q ∈ Sx where

Sx = {(y1/
√
a,−x1

√
a), (−y1/

√
a, x1

√
a)}.

Similarly, x1y2 − y1x2 = 0 if and only if Q ∈ Sy where

Sy = {(x1, y1), (−x1,−y1)}.

Otherwise (i.e. x1 6= 0 and y1 6= 0), Sx and Sy are given by

Sx =
{(

y1√
a
,−x1

√
a

)
,

(
− y1√

a
, x1

√
a

)
,

(
1

x1

√
a d

,−
√
a

y1
√
d

)
,

(
− 1
x1

√
a d

,

√
a

y1
√
d

)}
,

Sy =
{

(x1, y1), (−x1,−y1),
(

1
y1
√
d
,

1
x1

√
d

)
,

(
− 1
y1
√
d
,− 1

x1

√
d

)}
.

Proof. ⇒ : The set of all solutions to the system of equations y1y2+ax1x2 = 0, ax2
1+y2

1 =
1+dx2

1y
2
1, ax

2
2+y2

2 = 1+dx2
2y

2
2 gives Sx. The set of all solutions to the system of equations

x1y2−y1x2 = 0, ax2
1+y2

1 = 1+dx2
1y

2
1, ax

2
2+y2

2 = 1+dx2
2y

2
2 gives Sy. Clearly, all solutions

are distinct since (0, 0) is not on the curve.
⇐ : Trivial, by substitution.

Theorem 2.2 shows that suitable selection of a and d are not enough to eliminate all
exceptional cases. Therefore the formulae given by (3) are not complete. Nevertheless,
the exceptional inputs have a special property given by the following lemma.

Lemma 2.3. Let K,EE,a,d, P,Q be defined as in Theorem 2.2. Assume that P is a fixed
point of odd order. Assume that Q ∈ Sx ∪ Sy − {P}. Then Q is of even order.

Proof. The proof is given in Appendix-A.

We now provide a practical solution to prevent exceptional cases. We will recall
Corollary 2.4 in Section 4.

Corollary 2.4. Let EE,a,d be a twisted Edwards curve defined over K. Let P = (x1, y1)
and Q = (x2, y2) be points on EE,a,d. Assume that P and Q are of odd order with
P 6= Q. It follows that y1y2 + ax1x2 6= 0 and x1y2 − y1x2 6= 0.

Proof. The proof follows from Theorem 2.2 and Lemma 2.3.

Cryptographic applications involving elliptic curve scalar multiplication typically use
points of prime order. If this is the case, Corollary 2.4 shows that the addition formulae
given by (3) are exception-free for distinct input points. Furthermore, extending K can-
not introduce any exception. Of course, one can still choose arbitrary points as the input
at the expense of exception handling or leave the exceptions unhandled. However, this
can lead active attackers to succeed in exceptional point attacks, see [20]. As a general
solution, a suitable randomization technique can be used. For various randomization
techniques, a comprehensive reference is [10, chapter 29].

The rest of the paper is about cryptographic applications. Therefore, we now further
assume that K is finite. In some implementations the ratio I/M is quite large. For this

4

reason, a natural strategy is to prevent the frequent use of field inversions and a classical
solution is using projective coordinates.

At this stage, consider the homogenous projective coordinates in [1]. In this system,
each point (x, y) on ax2 + y2 = 1 + dx2y2 is represented as the triplet (X : Y : Z) which
corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. These triplets satisfy the
homogenous projective equation

(aX2 + Y 2)Z2 = Z4 + dX2Y 2. (4)

The curve defined by (4) is the projective closure of the curve ax2 + y2 = 1 +
dx2y2. The identity element is represented by (0: 1 : 1). The negative of (X : Y : Z)
is (−X : Y : Z). For all nonzero λ ∈ K, (X : Y : Z) = (λX : λY : λZ). We denote
this system by E . The choice of E leads to inversion-free very efficient point addition
algorithms recently proposed in [1, Section 6].

3 Extended Twisted Edwards Coordinates

To gain more speed, it is convenient to introduce an auxiliary coordinate t = xy to
represent a point (x, y) on ax2 + y2 = 1 + dx2y2 in extended affine coordinates (x, y, t).
One can pass to the projective representation using the map (x, y, t) 7→ (x : y : t : 1).
For all nonzero λ ∈ K, (X : Y : T : Z) = (λX : λY : λT : λZ) which satisfies (4) and
corresponds to the extended affine point (X/Z, Y/Z, T/Z) with Z 6= 0. The auxiliary
coordinate T has the property T = XY/Z. This point representation is named extended
twisted Edwards coordinates and is denoted by Ee. The identity element is represented
by (0: 1 : 0 : 1). The negative of (X : Y : T : Z) is (−X : Y : − T : Z). Given (X : Y : Z)
in E passing to Ee can be performed in 3M+1S by computing (XZ, Y Z,XY,Z2). Given
(X : Y : T : Z) in Ee passing to E is cost-free by simply ignoring T .

3.1 Unified Addition in Ee

Given (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) with Z1 6= 0 and Z2 6= 0, a unified addition
can be performed as (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 + Y1X2)(Z1Z2 − d T1T2),
Y3 = (Y1Y2 − aX1X2)(Z1Z2 + d T1T2),
T3 = (Y1Y2 − aX1X2)(X1Y2 + Y1X2),
Z3 = (Z1Z2 − d T1T2)(Z1Z2 + d T1T2).

(5)

These unified formulae are derived from the addition formulae (1). We deduce from
[5] and [1] that these formulae are also complete when d is not a square in K and a is a
square in K. The operations can be performed with a 9M + 2D algorithm given by

A← X1 ·X2, B ← Y1 · Y2, C ← d T1 · T2, D ← Z1 · Z2,

E ← (X1 + Y1) · (X2 + Y2)−A−B, F ← D − C, G← D + C,

H ← B − aA, X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G.

An 8M + 2D mixed addition algorithm can then be derived by setting Z2 = 1. This
means that we are adding (X1 : Y1 : T1 : Z1) and an extended affine point (x2, y2, x2y2)
which is equally written as (x2 : y2 : x2y2 : 1).

5

Choosing curve constants with extremely small sizes or extremely low (or high)
hamming weight can be used to eliminate the computational overhead of a field multi-
plication. For instance see [9], [7], [13]. See also [1, Section 7] for an alternative strategy
for the selection of constants. When using Ee the situation is even better if a = −1; we
save 1M + 1D rather than just 1D. Consider a twisted Edwards curve given by

ax2 + y2 = 1 + dx2y2.

The map (x, y) 7→ (x/
√
−a, y) defines the curve,

−x2 + y2 = 1 + (−d/a)x2y2.

This map can be constructed if −a is a square in K. It is worth pointing out here that
the curve −x2 + y2 = 1 + (−d/a)x2y2 corresponds to the Edwards curve x2 + y2 =
1 + (d/a)x2y2 via the map (x, y) 7→ (ix, y) if i ∈ K with i2 = −1. For such curves a
10M + 1S + 1D point addition algorithm is given in [4, add-2007-bl-4].

After a renaming of the constant −d/a to d′, the point addition on the twisted
Edwards curve −x2 +y2 = 1+d′x2y2 can now be performed with an 8M+1D algorithm
given by

A← (Y1 −X1) · (Y2 −X2), B ← (Y1 +X1) · (Y2 +X2), C ← k T1 · T2,

D ← 2Z1 · Z2, E ← B −A, F ← D − C, G← D + C, H ← B +A,

X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G

where k = 2d′. The optimization that leads to the removal of the extra multiplication is
similar to the optimizations in [24] and [4, add-2007-bl-4]. A 7M + 1D mixed addition
algorithm can be derived by setting Z2 = 1.

In the case a = −1, we comment that it is possible to save two additions by
further extending the coordinates to (X : Y : T : Z : Y − X : Y + X). Alternatively,
(Y2 − X2), (Y2 + X2), 2Z2, and k = 2d′ can be cached to save two additions and two
multiplications by 2 when performing readdition. We do not claim that these cachings
are very useful in practice. On the other hand, a caching of kT2 leads to readdition in
8M rather than 8M+1D. This can save time if D is large. As a consequence, readdition
with Z2 = 1 needs 7M rather than 7M+ 1D. Similar arguments can be easily extended
over the other algorithms in Section 3 when appropriate.

3.2 Dedicated Addition in Ee

Given the representations (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) of distinct points
with Z1 6= 0 and Z2 6= 0, the point addition can be performed as (X1 : Y1 : T1 : Z1)
+ (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),
Y3 = (Y1Y2 + aX1X2)(T1Z2 − Z1T2),
T3 = (T1Z2 + Z1T2)(T1Z2 − Z1T2),
Z3 = (Y1Y2 + aX1X2)(X1Y2 − Y1X2).

(6)

These formulae are independent of the curve constant d. These formulae are analo-
gous to the addition formulae (3). The operations can be performed with a 9M + 1D
algorithm given by

6

A← X1 ·X2, B ← Y1 · Y2, C ← Z1 · T2, D ← T1 · Z2, E ← D + C,

F ← (X1 − Y1) · (X2 + Y2) +B −A, G← B + aA, H ← D − C,
X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G.

An 8M + 1D mixed addition algorithm can be derived by setting Z2 = 1.
For the case a = −1, the operations can be performed with an 8M algorithm given

by

A← (Y1 −X1) · (Y2 +X2), B ← (Y1 +X1) · (Y2 −X2), C ← 2Z1 · T2,

D ← 2T1 · Z2, E ← D + C, F ← B −A, G← B +A, H ← D − C,
X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G.

A 7M mixed addition algorithm can be derived by setting Z2 = 1. A parallel version
of the dedicated addition algorithm is given in Section 4.4 for the case a = −1.

3.3 Dedicated Doubling in Ee

Given (X1 : Y1 : T1 : Z1) with Z1 6= 0, point doubling can be performed as 2(X1 : Y1 : T1 : Z1)
= (X3 : Y3 : T3 : Z3) where

X3 = 2X1Y1(2Z2
1 − Y 2

1 − aX2
1),

Y3 = (Y 2
1 + aX2

1)(Y 2
1 − aX2

1),
T3 = 2X1Y1(Y 2

1 − aX2
1),

Z3 = (Y 2
1 + aX2

1)(2Z2
1 − Y 2

1 − aX2
1).

(7)

These formulae are independent of the curve constant d. These are essentially the
same formulae from [1] plus the formula T3 = 2X1Y1(Y 2

1 − aX2
1) which increases the

number of multiplications needed to compute a point doubling by 1. The operations
can be performed with a 4M + 4S + 1D algorithm given by

A← X2
1 , B ← Y 2

1 , C ← 2Z2
1 , D ← aA, E ← (X1 + Y1)2 −A−B,

G← D +B, F ← G− C, H ← D −B, X3 ← E · F, Y3 ← G ·H,
T3 ← E ·H, Z3 ← F ·G.

This algorithm is similar to 3M + 4S + 1D point doubling algorithm in [1]. The
slowing down from 3M + 4S + 1D to 4M + 4S + 1D will be remedied in Section 4.3 by
mixing Ee with E . A parallel version of the doubling algorithm is given in Section 4.4
for the case a = −1.

3.4 More Formulae

Since we have two different addition formulae for computing x3 and another two for y3,
it is possible to produce hybrid addition formulae from (1) and (3). The hybrid formulae
are given by

(x1, y1) + (x2, y2) =
(
x1y1 + x2y2
y1y2 + ax1x2

,
y1y2 − ax1x2

1− dx1y1x2y2

)
= (x3, y3), (8)

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1y1x2y2
,
x1y1 − x2y2
x1y2 − y1x2

)
= (x3, y3). (9)

We comment that Ee analogs of (8) and (9) lead to similar speeds.

7

4 Applications

We provide further optimizations targeting scalar multiplication operations, nP where
n is an integer called the scalar and P is the base point multiplied by the scalar.

The impact of the new unified addition algorithms in Ee for preventing side channel
attacks is discussed in Section 4.1. Parallel versions of the 8M + 1D unified addition in
Ee are provided in Section 4.2. The speed of scalar multiplication on twisted Edwards
curves is increased by mixing Ee with E in Section 4.3. A parallel implementation of fast
scalar multiplication in Ee is explained in Section 4.4. When parallelization is desired
the algorithms in Section 4.2 and Section 4.4 help to reduce significantly the effective
cost of scalar multiplication. Other applications appear in Section 4.5.

4.1 Defeating SPA Attacks

It is well known that a scalar multiplication algorithm can gain SPA protection when
unified additions are used as the only group operation, see [10, Section 29.1.2] for in-
stance. From Section 3.4 we know that the unified addition costs 9M+2D in Ee. For the
case a = −1 the cost drops to 8M+1D. Both results are faster than all the other unified
addition algorithms known to date. Assuming that S = 0.8M and D ≈ 0, the 8M + 1D
algorithm is approximately 17.5%, 22.5%, 35%, 50%, 55%, 82.5%, 97.5% faster than the
best results in [18], [6], [5], [21], [7], [23], [8], respectively. Note, if S = M most speedups
will be even more significant. Furthermore, both unified addition algorithms are com-
plete for suitably selected parameters, see section 2 for pointers. The completeness is a
stronger property than the unification, see [5, p.2].

Another approach to a protected scalar multiplication is using the Montgomery lad-
der with Montgomery curves or Kummer surfaces. Montgomery’s algorithm for Mont-
gomery curves in [24] use 5M + 4S + 1D per scalar bit. Gaudry/Lubicz algorithm for
Kummer surfaces (genus 1, odd characteristic case) in [17] use 3M + 6S + 3D per scalar
bit. We will only provide comparisons with Montgomery curves in the rest of the paper.
Assuming that an optimized protected scalar multiplication algorithm uses 1.2 unified
additions per scalar bit, scalar multiplication using the 8M+1D algorithm then requires
(8M + 1D) × 1.2 = 9.6M + 1.2D per scalar bit. Assuming that 0.67M ≤ S ≤M and
0 < D ≤ M, this will be approximately 6% to 25% slower2 than Montgomery curves.
However, we will show in Section 4.2 that the 8M + 1D algorithm can be faster on
parallel implementations. When designing the parallel algorithms we try exploiting all
inherent parallelism. If an M is performed in parallel with a D and/or an S then the
cost is counted as an effective 1M.

4.2 Defeating SPA Attacks in Parallel Environments

A useful feature of the 8M + 1D unified addition algorithm is that it is highly paral-
lelizable. In this section, targeting parallel environments, we explain how a protected
scalar multiplication using the 8M + 1D unified addition in Ee can perform faster than
a protected scalar multiplication based on the Montgomery ladder [24]. For details on
the ladder algorithm and Montgomery curves, we refer the reader to [24] and [22]. See
[19] and [16] for preventing side channel attacks in parallel environments using general
elliptic curves.

2The ratios S/M and D/M are fixed equally for both cases.

8

The Montgomery curve EM,A,B is defined by By2 = x3 +Ax2 + x with B(A2− 4) 6=
0. Given the projective coordinates of two points (Xm : Zm) and (Xn : Zn) and also
(Xm−n : Zm−n) = (Xm : Zm) − (Xn : Zn); (Xm+n, : Zm+n) = (Xm : Zm) + (Xn : Zn) is
given in [24] by

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2,
Zm+n = Xm−n((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))2.

Dedicated doubling formulae (which can be faster than the addition) are used to
compute X2n and Z2n given in [24] by

4XnZn = (Xn + Zn)2 − (Xn − Zn)2,
X2n = (Xn + Zn)2(Xn − Zn)2,
Z2n = (4XnZn)((Xn − Zn)2 + ((A+ 2)/4)(4XnZn)).

The doubling algorithm uses 2M + 2S + 1D and the addition algorithm uses 3M +
2S assuming that Zm−n = 1. The total cost of a doubling and an addition is then
5M + 4S + 1D. In a sequential environment it is convenient to consider the addition
and doubling operations as a single composite operation. This approach is given in [4].
To follow the same notation rename

[(A+ 2)/4, Xm−n, Zm−n, Xm, Zm, Xn, Zn, X2n, Z2n, Xm+n, Zm+n]

as [a24, X1, Z1, X2, Z2, X3, Z3, X4, Z4, X5, Z5]. Assuming that Z1 = 1, a 5M + 4S + 1D
Montgomery differential-addition-and-doubling algorithm is given in [4, mladd-1987-m]
by

A← X2 + Z2, AA← A2, B ← X2 − Z2, BB ← B2, E ← AA−BB,
C ← X3 + Z3, D ← X3 − Z3, DA← D ·A, CB ← C ·B,
X5 ← (DA+ CB)2, Z5 ← X1 · (DA− CB)2, X4 ← AA ·BB,

Z4 ← E · (BB + a24E).

2-Processor Montgomery addition and doubling. In [22], it is observed
that the doubling and the addition phases of the Montgomery ladder algorithm can
be performed independently. From this, it is clear that one of the processors needs
2M + 2S + 1D and the other needs 3M + 2S to perform doubling and addition, respec-
tively. Since 3M + 2S ≥ 2M + 2S + 1D we conclude that one round of computing a
doubling and an addition can be done in an effective 3M + 2S. Alternatively, we can
parallelize the “mladd-1987-m” algorithm in [4]. This approach also yields an effective
3M + 2S. See Appendix-B. The ladder algorithm then uses 3M + 2S per scalar bit.

2-Processor twisted Edwards (a = −1) unified addition in Ee. We now
investigate the 8M + 1D unified addition algorithm. We can split the computational
task into 9 steps with a full utilization of 2 processors. The unified addition can then
be performed with an effective 4M + 1D algorithm.

Cost Step Processor 1 Processor 2
1 R1 ← Y1 −X1 R2 ← Y2 −X2

2 R3 ← Y1 + X1 R4 ← Y2 + X2

1M 3 R5 ← R1 ·R2 R6 ← R3 ·R4

1M 4 R7 ← T1 · T2 R8 ← Z1 · Z2

1D 5 R7 ← kR7 R8 ← 2R8

6 R1 ← R6 −R5 R2 ← R8 −R7

7 R3 ← R8 + R7 R4 ← R6 + R5

1M 8 X3 ← R1 ·R2 Y3 ← R3 ·R4

1M 9 T3 ← R1 ·R4 Z3 ← R2 ·R3

9

Assuming that an optimized SPA protected scalar multiplication algorithm uses 1.2
unified additions per scalar bit, we have the cost estimate (4M+1D)×1.2 = 4.8M+1.2D
per scalar bit (for each of 2 processors). The fastest system is determined by the ratios
S/M and D/M. For instance, if S = M and D ≈ 0 then twisted Edwards (a = −1)
curves are approximately 4.2% faster than Montgomery curves. On the other hand,
using Montgomery curves still seems to be preferable since the ladder algorithm needs
less memory and it is not affected by changes in the ratio D/M. Note also that S < M
in some applications.

We omit details for the 3-processor case which can be derived with similar ap-
proaches.

4-Processor Montgomery addition and doubling. The Montgomery addition
and doubling does not nicely fit the 4-processor setting. For instance the “mladd-1987-
m” algorithm in [4] seems to be quite uncompetitive even if we exploit all inherent
parallelism. A quick investigation shows that we can perform a doubling-and-addition
in an effective 2M + 2S if we try to minimize the number of steps (see Appendix-B) or
2M + 1S + 1D if we try to minimize the cost for the special case D < M − S or 3M
if we merge the squaring step and the multiplication by the constant step (counted as
M). We will use the 2M + 2S case for the comparisons. The ladder algorithm then
uses 2M + 2S per scalar bit. To prevent any unfair comparison we will also consider a
2M + 1S algorithm at the end of this section.

4-Processor twisted Edwards (a = −1) unified addition in Ee. We can split
the computational task into 5 sequential steps among 4 processors. The unified addition
can then be performed with an effective 2M + 1D algorithm.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 R1 ← Y1 −X1 R2 ← Y2 −X2 R3 ← Y1 + X1 R4 ← Y2 + X2

1M 2 R5 ← R1 ·R2 R6 ← R3 ·R4 R7 ← T1 · T2 R8 ← Z1 · Z2

1D 3 idle idle R7 ← kR7 R8 ← 2R8

4 R1 ← R6 −R5 R2 ← R8 −R7 R3 ← R8 + R7 R4 ← R6 + R5

1M 5 X3 ← R1 ·R2 Y3 ← R3 ·R4 T3 ← R1 ·R4 Z3 ← R2 ·R3

Following the assumption from the 2-processor case we have the cost estimate (2M+
1D) × 1.2 = 2.4M + 1.2D per scalar bit. If S = M and D ≈ 0 then twisted Edwards
(a = −1) curves are approximately 66.7% faster than Montgomery curves. If S = 0.8M
and D = 0.25M then twisted Edwards (a = −1) curves are approximately 33.3% faster.
If S = 0.8M and D = M then twisted Edwards (a = −1) curves are approximately
5.9% faster.

Assuming D ≈ 0, we estimate that a “256-bit, sliding window, 4-NAF” scalar mul-
tiplication on twisted Edwards (a = −1) curves will require approximately 602M for
each of 4 processors, depending on the analysis in [5, Section 5].

Consider the field multiplication operation kR7 in Step 3. The finite field arithmetic
can be implemented building on integer arithmetic. Treating field elements k as a 4n-bit
integer and R7 as an integer, we fix k1, k2, k3, k4 ∈

[
0, 2n− 1

]
such that k = k0 + 2nk1 +

22nk2 + 23nk3. Now, kR7 can be obtained as k0R7 + 2n(k1R7) + 22n(k2R7) + 23n(k3R7)
by computing kiR7 in parallel. The rest of the computation for obtaining kR7 can be
practically negligible (depending on the application). Here, the 3 additions to obtain kR7

and R8 ← 2R8 can be put in a new parallel step. Furthermore if #K is a special prime
allowing very fast modular reduction (such as NIST primes) then the cost of casting
the integer kR7 to K (i.e. the modular reduction) can also be practically negligible
(depending on the application). This method leads to a better utilization of processors
and can be used for decreasing D. Even if k is of the full size (i.e. D = M), this
technique fixes each ki to a quarter of the size of k (i.e. D is close to 0.25M if schoolbook

10

multiplication and fast reduction are being used). Alternatively, fixing n to the word
size of the underlying hardware (or maybe to the size of a compiler-supported data type)
can be advantageous in some applications. The same method can be adapted to the
2-processor case.

The parallel implementation of Ee ← Ee +Ee is easier than the Montgomery case be-
cause all processors perform similar tasks at each step. In addition, the implementation
does not require a special field squaring circuit to gain better timings.

2×2-Processor Montgomery addition and doubling. If the doubling operation
is assigned to a team of two processors and the addition operation is assigned to another
team of two processors, the 2M+2S figure can be improved to 2M+1S. See Appendix-
B. Here, we make the assumption that the addition-team and the doubling-team work in
an unsynchronized fashion and perform the synchronization at the end (of each round);
we are not claiming that the implementation of this is easy. Even with this assumption
twisted Edwards (a = −1) curves can still be faster. For instance, if S = M and D ≈ 0
then twisted Edwards (a = −1) curves are approximately 25% faster than Montgomery
curves.

4.3 Fast Scalar Multiplication

In [11], Cohen, Miyaji, and Ono introduced the modified Jacobian coordinates and stud-
ied other systems in the literature, namely affine, projective, Jacobian, and Chudnovsky
Jacobian coordinates. To gain better timings they proposed a technique of carefully
mixing these coordinates. We follow a similar approach. Note, the notations E and Ee

follow the notation introduced in [11].
On twisted Edwards curves, the speed of scalar multiplications which involve point

doublings can be increased by mixing Ee with E . The following technique replaces
(slower) doublings in Ee with (faster) doublings in E . In the execution of a scalar
multiplication:

(i) If a point doubling is followed by another point doubling, use E ← 2E .

(ii) If a point doubling is followed by a point addition, use

1. Ee ← 2E for the point doubling step; followed by,

2. E ← Ee + Ee for the point addition step.

E ← 2E is performed using 3M + 4S + 1D doubling algorithm in [1]. The details of
the other operations are given below.
Ee ← 2E using (7):

(i) In Section 3 it was noted that passing from (X : Y : Z) to (X : Y : T : Z) (i.e.
passing from E to Ee) can be performed in 3M + 1S. From this, it might seem at
the first glance that computing Ee ← 2E will more costly than expected. However,
the doubling algorithm for (7) does not use the input T1 and so it can be used for
Ee ← 2E without modification.

(ii) Theorem 2.1 implies that Z1 and Z3 are always nonzero if the base point is of odd
order. Alternatively, careful selection of a and d also guarantees that Z1 and Z3

are always nonzero regardless of the order of the base point, see [1].

E ← Ee + Ee based on (either) (5) or (6):

11

(i) Observe that one field multiplication can be saved by not computing T3. This
can be regarded as a remedy to the extra field multiplication which appears in
Ee ← 2E while computing T3.

(ii) If (6) is used (without computing T3), scalar multiplication is independent of d.
Indeed E ← 2E (see [1]) and Ee ← 2E (see Section 3.3) are also independent of d.
Formulae (6) save time if D is large. In addition, Corollary 2.4 implies that Z1,
Z2 and Z3 are always nonzero if the base point is of odd order.

(iii) If (5) is used (without computing T3), the curve constant d will be involved in
the calculations. Using the concept of readdition discussed in Section 3.4, one can
also achieve similar performance in comparison to the case of (6). In addition,
Theorem 2.1 implies that Z1, Z2 and Z3 are always nonzero if the base point is of
odd order. Alternatively, careful selection of a and d also guarantees that Z1, Z2

and Z3 are always nonzero regardless of the order of the base point, see [1].

In Table 1, a comparison is made for the speeds that can be achieved under different
S/M and D/M scenarios. These estimates are based on the analysis in [5, Section 5].
To gain the best speed, we assume that (a = −1). To make the cost estimation easier
(without sacrificing the accuracy), we can consider the cost of Ee ← 2E as 3M + 4S by
pushing the extra multiplication to the operation count of E ← Ee +Ee. In this case, the
relevant costs for various additions based on the formulae (6) are as follows. Addition:
8M; readdition: 8M; readdition with Z2 = 1: 7M; mixed addition (i.e. addition with
Z2 = 1 reasonably denoted by E ← Ee + Ae): 7M. As a special case, we also include
cost estimates for the Montgomery ladder [24] which require 5M + 4S + 1D per scalar
bit. The rows are sorted with respect to the column (.8, 0) in descending order. The
headers (e.g. (.8, .5)) of columns 2 to 7 fix the ratios S/M and D/M, respectively. (Of
course, D/M = 0 should be regarded as D/M ≈ 0 when it appears.)

Table 1: Cost estimates (M) for fast scalar multiplication, 256-bit. (The Montgomery
ladder algorithm for Montgomery curves and “sliding window, 4-NAF” method for Ed-
wards, inverted Edwards, and mixed twisted Edwards coordinates).

System (1,1) (.8, 1) (1, .5) (.8, .5) (1, 0) (.8, 0)
Montgomery Ladder, [24] 2560 2355 2432 2227 2304 2099
Edwards, [5] 2351 2139 2326 2115 2301 2090
Inverted Edwards, [6] 2552 2341 2402 2191 2251 2040
Twisted Edwards (a = −1), mixed 2152 1951 2152 1951 2152 1951

It is also convenient to consider Ee ← 2E followed by E ← Ee + Ee as a single
composite operation as E ← 2E + Ee where Ee is the base point. See [15] for a similar
approach in affine Weierstrass coordinates.

4.4 Fast Scalar Multiplication in Parallel Environments

It is natural to ask whether the speed of the protected scalar multiplication discussed in
Section 4.2 can be increased by using a fast dedicated doubling algorithm. Unfortunately
mixing Ee with E does not seem to be helpful in parallel environments for increasing the
speed. Nevertheless, Ee ← 2Ee can be performed with an effective 1M + 1S algorithm,
as follows.

12

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 idle idle idle R1 ← X1 + Y1

1S 2 R2 ← X2
1 R3 ← Y 2

1 R4 ← Z2
1 R5 ← R2

1
3 R6 ← R2 + R3 R7 ← R2 −R3 R4 ← 2R4 idle
4 idle R1 ← R4 + R7 idle R2 ← R6 −R5

1M 5 X3 ← R1 ·R2 Y3 ← R6 ·R7 T3 ← R2 ·R6 Z3 ← R1 ·R7

This is essentially the same algorithm as in Section 3.3. It is easy to deduce that the
2-processor point doubling needs an effective 2M + 2S. Point addition Ee ← Ee + Ee

can be performed with an effective 2M algorithm, as follows.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 R1 ← Y1 −X1 R2 ← Y2 + X2 R3 ← Y1 + X1 R4 ← Y2 −X2

1M 2 R5 ← R1 ·R2 R6 ← R3 ·R4 R7 ← Z1 · T2 R8 ← T1 · Z2

3 idle idle R7 ← 2R7 R8 ← 2R8

4 R1 ← R8 + R7 R2 ← R6 −R5 R3 ← R6 + R5 R4 ← R8 −R7

1M 5 X3 ← R1 ·R2 Y3 ← R3 ·R4 T3 ← R1 ·R4 Z3 ← R2 ·R3

This is essentially the same algorithm as in Section 3.2. It is easy to deduce that
the 2-processor point doubling needs an effective 4M. One may prefer using the parallel
version of the addition formulae (1) which comes at the expense of multiplication by d.
See the discussions about readdition in Section 3.4 and partitioning k in Section 4.2.
Assuming S = 0.8M and D ≈ 0, we estimate that “256-bit, sliding window, 4-NAF”
scalar multiplication using Ee will require approximately 552M for each of 4 processors,
depending on the analysis in [5, Section 5].

4.5 Other Applications

Point addition intensive operations bring out the full power of the new addition algo-
rithms. Therefore, we will consider the batch signature verification algorithm in this
section.

There is a vast literature on the optimization of special exponentiation techniques. A
general references is [10]. An example to the case of scalar multiplication is computing∑
niPi with fixed base point(s) or fixed scalar(s). In [5, Section 7], cost estimations

for selected applications about
∑
niPi are provided for several curve models. The ex-

pected increases in speed for twisted Edwards curves can be deduced from [5] by simply
substituting the new operation counts. For instance, the batch signature verification
technique in [12] attributed to Bos-Coster is summarized in [5, Section 5] for one variant
of the ElGamal signature system. The cost estimates for this operation are given in
Table 2 in comparison to Edwards coordinates and inverted Edwards coordinates.

Table 2: Cost estimates (M) for batched verification of 100 ElGamal signatures, 256-bit.
System (1,1) (.8, 1) (1, .5) (.8, .5) (1, 0) (.8, 0)
Edwards, [5] 302 297 289 284 276 271
Inverted Edwards, [6] 276 271 264 259 251 246
Twisted Edwards (a = −1), Ee 201 201 201 201 201 201

5 Conclusion

In this work, a new point representation Ee is introduced for twisted Edwards curves.
We derive efficient and highly parallel group operations and discuss alternative ways of
preventing exceptional cases. We then provide performance estimates and comparisons
for different implementation scenarios.

13

Defeating SPA Attacks. We provide two fast unified addition algorithms which cost
9M + 2D and 8M + 1D. The latter case is at least 22% faster than all the other unified
addition methods stated in the literature. These formulae are even 17.5% faster than
our preliminary result in [18].

Defeating SPA Attacks in Parallel Environments. We provide an effective 2M + 1D
unified point addition algorithm on a 4-processor environment. We further showed that
twisted Edwards (a = −1) curves can be faster up to 66.7% than Montgomery curves
in this parallel environment.

Fast Scalar Multiplication. We first handle single-scalar multiplication. We explain
how to perform fast scalar multiplication by mixing Ee with twisted Edwards coordinates
E , improving the current relevant literature bounds by approximately 4%-18%. We
then point out that multi-scalar multiplications profit even more from the faster point
additions in Ee.

Fast Scalar Multiplication in Parallel Environments. We also point to the parallel
versions of fast scalar multiplication offering a speed increase by a factor of 3.54 (using
4 processors) over the optimized sequential case.

In conclusion, we have pushed the recent speed limits of Elliptic Curve Cryptography
forward in a wide range of applications. Building on our observations we recommend
using Ee (and mixing Ee with E when useful) for speeding up the scalar multiplication
in several different settings.

Acknowledgement

The authors thank Tanja Lange and anonymous referees for very useful comments and
suggestions.

References

[1] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
Twisted Edwards curves. In AFRICACRYPT 2008, volume 5023 of LNCS, pages
389–405. Springer, 2008.

[2] Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters. Optimiz-
ing double-base elliptic-curve single-scalar multiplication. In INDOCRYPT 2007,
volume 4859 of LNCS, pages 167–182. Springer, 2007.

[3] Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters. ECM
using Edwards curves. Cryptology ePrint Archive, Report 2008/016, 2008. http:
//eprint.iacr.org/.

[4] Daniel J. Bernstein and Tanja Lange. Explicit-formulas database (2007). http:
//www.hyperelliptic.org/EFD.

[5] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic
curves. In ASIACRYPT 2007, volume 4833 of LNCS, pages 29–50. Springer, 2007.

[6] Daniel J. Bernstein and Tanja Lange. Inverted Edwards coordinates. In AAECC-17,
volume 4851 of LNCS, pages 20–27. Springer, 2007.

[7] Olivier Billet and Marc Joye. The Jacobi model of an elliptic curve and side-channel
analysis. In AAECC-15, volume 2643 of LNCS, pages 34–42. Springer, 2003.

14

[8] Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks. In
PKC 2002, volume 2274 of LNCS, pages 335–345. Springer, 2002.

[9] Eric Brier and Marc Joye. Fast point multiplication on elliptic curves through
isogenies. In AAECC-15, volume 2643 of LNCS, pages 43–50. Springer, 2003.

[10] Henri Cohen and Gerhard Frey, editors. Handbook of Elliptic and Hyperelliptic
Curve Cryptography. CRC Press, 2005.

[11] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve exponen-
tiation using mixed coordinates. In ASIACRYPT’98, volume 1514 of LNCS, pages
51–65. Springer, 1998.

[12] Peter de Rooij. Efficient exponentiation using precomputation and vector addition
chains. In EUROCRYPT’94, volume 950 of LNCS, pages 389–399. Springer, 1994.

[13] Christophe Doche, Thomas Icart, and David R. Kohel. Efficient scalar multipli-
cation by isogeny decompositions. In PKC 2006, volume 3958 of LNCS, pages
191–206. Springer, 2006.

[14] Harold M. Edwards. A normal form for elliptic curves. Bulletin of the AMS,
44(3):393–422, July 2007.

[15] Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery. Fast elliptic curve
arithmetic and improved Weil pairing evaluation. In CT-RSA 2003, volume 2612
of LNCS, pages 343–354. Springer, 2003.

[16] Wieland Fischer, Christophe Giraud, Erik Woodward Knudsen, and Jean-Pierre
Seifert. Parallel scalar multiplication on general elliptic curves over Fp hedged
against non-differential side-channel attacks. Cryptology ePrint Archive, Report
2002/007, 2002. http://eprint.iacr.org/.

[17] Pierrick Gaudry and David Lubicz. The arithmetic of characteristic 2 Kummer
surfaces. Cryptology ePrint Archive, Report 2008/133, 2008. http://eprint.
iacr.org/.

[18] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Faster group
operations on elliptic curves. Cryptology ePrint Archive, Report 2007/441, 2007.
http://eprint.iacr.org/.

[19] Tetsuya Izu and Tsuyoshi Takagi. A fast parallel elliptic curve multiplication re-
sistant against side channel attacks. In PKC 2002, volume 2274 of LNCS, pages
280–296. Springer, 2002.

[20] Tetsuya Izu and Tsuyoshi Takagi. Exceptional procedure attack on elliptic curve
cryptosystems. In PKC 2003, volume 2567 of LNCS, pages 224–239. Springer, 2003.

[21] Marc Joye and Jean Jacques Quisquater. Hessian elliptic curves and side-channel
attacks. In CHES 2001, volume 2162 of LNCS, pages 402–410. Springer, 2001.

[22] Marc Joye and Sung-Ming Yen. The Montgomery powering ladder. In CHES 2002,
volume 2523 of LNCS, pages 291–302. Springer, 2003.

15

[23] Pierre Yvan Liardet and Nigel P. Smart. Preventing SPA/DPA in ECC systems
using the Jacobi form. In CHES 2001, volume 2162 of LNCS, pages 391–401.
Springer, 2001.

[24] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of Computation, 48(177):243–264, 1987.

A Proof of Lemma 2.3

Proof. Note that the points at infinity are of even order, see [1]. Assume that P =
(x1, y1) is of odd order. Thus, P is not one of the points at infinity. Assume that
Q ∈ Sx ∪Sy −{P}. If Q were one of the points at infinity it would have even order and
the claim follows. Note also that P 6= Q and P 6= −Q since P,−P /∈ Sx ∪ Sy − {P}.
Instead of a further case by case analysis on Sx ∪ Sy − {P}, we will prove the lemma
with a general approach. The proof has two parts.

In the first part we will prove that all points in Sx are of even order. Assume that
Q = (x2, y2) is an element of Sx. By Theorem 2.2, ax1x2 + y1y2 = 0.

Suppose that x1 = 0. Since P is of odd order P 6= (0,−1) and consequently P =
(0, 1). By Theorem 2.2, Q = (±1/

√
a, 0). Since 4(±1/

√
a, 0) = (0, 1), Q is of even order

as desired.
Assume from now on that x1 6= 0. We can write x2 = −y1y2/(ax1) since x1 is

nonzero. Let M = 2P and N = 2Q. Since P is of odd order, so is M . Therefore, M
is not one of the points at infinity. We can assume that N is not one of the points at
infinity; for otherwise Q is of even order as desired. Using the relation x2 = −y1y2/(ax1)
and formula (3) for computing x3 we get

x(N) =
2x2y2

y2
2 + ax2

2

=
2(−y1y2/(ax1))y2

y2
2 + a(−y1y2/(ax1))2

= − 2x1y1

y2
1 + ax2

1

= −x(M).

The denominators y2
1 +ax2

1 and y2
2 +ax2

2 must be nonzero since M and N are not points
at infinity. By the curve definition we have

y = ±
√

(1− ax2)/(1− dx2).

So y(M) = ±y(N) since |x(M)| = |x(N)|.
y(M) = −y(N) implies that M −N = (0,−1), a point of order 2. Then 2(M −N) =

2(2P − 2Q) = 4(P −Q) = (0, 1). So P −Q is a point of order 4.
y(M) = y(N) implies that M +N = (0, 1), the identity. Then M +N = 2P + 2Q =

2(P +Q) = (0, 1). So P +Q is a point of order 2 since P 6= −Q.
In conclusion, we have P ±Q of even order for all situations. Since P is of odd order,

Q ∈ Sx must be of even order.
In the second part of the proof we will prove that all points in Sy − {P} are of

even order. Assume that Q = (x2, y2) is an element of Sy − {P}. By Theorem 2.2,
x1y2 − y1x2 = 0.

Suppose that x1 = 0. Since P is of odd order P 6= (0,−1) and consequently P =
(0, 1). By Theorem 2.2, Q = (0,−1). Then Q is of even order as desired.

Assume from now on that x1 6= 0. We can write y2 = y1x2/x1 since x1 is nonzero.
Let M = 2P and N = 2Q. Since P is of odd order, so is M . Therefore, M is not one
of the points at infinity. We can assume that N is not one of the points at infinity; for
otherwise Q is of even order as desired. Using the relation y2 = y1x2/x1 and formula (3)
for computing x3 we get

x(N) =
2x2y2

y2
2 + ax2

2

=
2x2(y1x2/x1)

(y1x2/x1)2 + ax2
2

=
2x1y1

y2
1 + ax2

1

= x(M).

16

The denominators y2
1 +ax2

1 and y2
2 +ax2

2 must be nonzero since M and N are not points
at infinity. By the curve definition y(M) = ±y(N) since |x(M)| = |x(N)|.

y(M) = −y(N) implies that M +N = (0,−1), a point of order 2. Then 2(M +N) =
2(2P + 2Q) = 4(P +Q) = (0, 1). So P +Q is a point of order 4.

y(M) = y(N) implies that M −N = (0, 1), the identity. Then M −N = 2P − 2Q =
2(P −Q) = (0, 1). So P −Q is a point of order 2 since P 6= Q.

In conclusion, we have P ±Q of even order for all situations. Since P is of odd order,
Q ∈ Sy − {P} must be of even order.

In summary, all points in Sx ∪ Sy − {P} are of even order provided that P is of odd
order.

B Parallel algorithms

This appendix contains parallel algorithms for Montgomery addition and doubling dis-
cussed in Section 4.2.

2-processor Montgomery differential-addition-and-doubling. Effective 3M+
2S, assumption Z1 = 1, adapted from [4, mladd-1987-m].

Cost Step Processor 1 Processor 2
1 R1 ← X2 + Z2 R2 ← X2 − Z2

2 R3 ← X3 + Z3 R4 ← X3 − Z3

1S 3 R5 ← R2
1 R6 ← R2

2
4 R7 ← R5 −R6 idle

1M 5 R1 ← R1 ·R4 R2 ← R2 ·R3

6 R3 ← R1 + R2 R4 ← R1 −R2

1S 7 X5 ← R2
3 R2 ← R2

4
1M 8 R8 ← a24R7 X4 ← R5 ·R6

9 R8 ← R6 + R8 idle
1M 10 Z4 ← R7 ·R8 Z5 ← X1 ·R2

4-processor Montgomery differential-addition-and-doubling. Effective 2M+
2S, adapted from [4, mladd-1987-m].

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 R1 ← X2 + Z2 R2 ← X2 − Z2 R3 ← X3 + Z3 R4 ← X3 − Z3

1S 2 R5 ← R2
1 R6 ← R2

2 idle idle
3 R7 ← R5 −R6 idle idle idle

1M 4 R1 ← R1 ·R4 R2 ← R2 ·R3 R8 ← a24R7 idle
5 R3 ← R1 + R2 R4 ← R1 −R2 R8 ← R6 + R8 idle

1S 6 X5 ← R2
3 R2 ← R2

4 idle idle
1M 7 Z5 ← X1 ·R2 X4 ← R5 ·R6 Z4 ← R7 ·R8 idle

2×2-processor Montgomery differential-addition and Montgomery dou-
bling. Effective 2M + 1S. Using the notation from [4].

2-processor Montgomery Addition 2-processor Montgomery Doubling
Cost Step Processor 1 Processor 2

1 R0 ← X2 − Z2 R1 ← X3 + Z3

2 R2 ← X2 + Z2 R3 ← X3 − Z3

1M 3 R0 ← R0 ·R1 R2 ← R2 ·R3

4 R1 ← R0 + R2 R3 ← R0 −R2

1S 5 R0 ← R2
1 R2 ← R2

3
1M 6 X5 ← Z1 ·R0 Z5 ← X1 ·R2

Cost Step Processor 1 Processor 2
1 R4 ← X2 + Z2 R5 ← X2 − Z2

1S 2 R4 ← R2
4 R5 ← R2

5
3 R6 ← R4 −R5 idle

1D 4 R7 ← a24R6 idle
5 R7 ← R5 + R7 idle

1M 6 X4 ← R4 ·R5 Z4 ← R6 ·R7

The effective cost of addition is 2M + 1S (even if Z1 = 1). The effective cost of
doubling is 1M + 1S + 1D. Since 2M + 1S ≥ 1M + 1S + 1D the overall effective cost
is 2M + 1S depending on the assumption in Section 4.2.

17

