RadialShadingContext.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.pdfbox.pdmodel.graphics.shading;
import java.awt.Rectangle;
import java.awt.geom.AffineTransform;
import java.awt.geom.NoninvertibleTransformException;
import java.awt.image.ColorModel;
import java.awt.image.Raster;
import java.awt.image.WritableRaster;
import java.io.IOException;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.pdfbox.cos.COSArray;
import org.apache.pdfbox.cos.COSBoolean;
import org.apache.pdfbox.pdmodel.common.function.PDFunction;
import org.apache.pdfbox.util.Matrix;
/**
* AWT PaintContext for radial shading.
*
* Performance improvement done as part of GSoC2014, Tilman Hausherr is the mentor.
*
* @author Shaola Ren
*/
public class RadialShadingContext extends ShadingContext
{
private static final Log LOG = LogFactory.getLog(RadialShadingContext.class);
private PDShadingType3 radialShadingType;
private final float[] coords;
private final float[] domain;
private final boolean[] extend;
private final double x1x0;
private final double y1y0;
private final double r1r0;
private final double r0pow2;
private final float d1d0;
private final double denom;
private final int factor;
private final int[] colorTable;
private AffineTransform rat;
/**
* Constructor creates an instance to be used for fill operations.
*
* @param shading the shading type to be used
* @param colorModel the color model to be used
* @param xform transformation for user to device space
* @param matrix the pattern matrix concatenated with that of the parent content stream
* @param deviceBounds the bounds of the area to paint, in device units
* @throws IOException if there is an error getting the color space or doing color conversion.
*/
public RadialShadingContext(PDShadingType3 shading, ColorModel colorModel,
AffineTransform xform, Matrix matrix, Rectangle deviceBounds)
throws IOException
{
super(shading, colorModel, xform, matrix);
this.radialShadingType = shading;
coords = shading.getCoords().toFloatArray();
// domain values
if (this.radialShadingType.getDomain() != null)
{
domain = shading.getDomain().toFloatArray();
}
else
{
// set default values
domain = new float[] { 0, 1 };
}
// extend values
COSArray extendValues = shading.getExtend();
if (extendValues != null)
{
extend = new boolean[2];
extend[0] = ((COSBoolean) extendValues.getObject(0)).getValue();
extend[1] = ((COSBoolean) extendValues.getObject(1)).getValue();
}
else
{
// set default values
extend = new boolean[] { false, false };
}
// calculate some constants to be used in getRaster
x1x0 = coords[3] - coords[0];
y1y0 = coords[4] - coords[1];
r1r0 = coords[5] - coords[2];
r0pow2 = Math.pow(coords[2], 2);
denom = Math.pow(x1x0, 2) + Math.pow(y1y0, 2) - Math.pow(r1r0, 2);
d1d0 = domain[1] - domain[0];
try
{
// get inverse transform to be independent of current user / device space
// when handling actual pixels in getRaster()
rat = matrix.createAffineTransform().createInverse();
rat.concatenate(xform.createInverse());
}
catch (NoninvertibleTransformException ex)
{
LOG.error(ex.getMessage() + ", matrix: " + matrix, ex);
rat = new AffineTransform();
}
// shading space -> device space
AffineTransform shadingToDevice = (AffineTransform)xform.clone();
shadingToDevice.concatenate(matrix.createAffineTransform());
// worst case for the number of steps is opposite diagonal corners, so use that
double dist = Math.sqrt(Math.pow(deviceBounds.getMaxX() - deviceBounds.getMinX(), 2) +
Math.pow(deviceBounds.getMaxY() - deviceBounds.getMinY(), 2));
factor = (int) Math.ceil(dist);
// build the color table for the given number of steps
colorTable = calcColorTable();
}
/**
* Calculate the color on the line that connects two circles' centers and store the result in an
* array.
*
* @return an array, index denotes the relative position, the corresponding value the color
*/
private int[] calcColorTable() throws IOException
{
int[] map = new int[factor + 1];
if (factor == 0 || Float.compare(d1d0,0) == 0)
{
float[] values = radialShadingType.evalFunction(domain[0]);
map[0] = convertToRGB(values);
}
else
{
for (int i = 0; i <= factor; i++)
{
float t = domain[0] + d1d0 * i / factor;
float[] values = radialShadingType.evalFunction(t);
map[i] = convertToRGB(values);
}
}
return map;
}
@Override
public void dispose()
{
super.dispose();
radialShadingType = null;
}
@Override
public Raster getRaster(int x, int y, int w, int h)
{
// create writable raster
WritableRaster raster = getColorModel().createCompatibleWritableRaster(w, h);
float inputValue = -1;
boolean useBackground;
int[] data = new int[w * h * 4];
float[] values = new float[2];
for (int j = 0; j < h; j++)
{
for (int i = 0; i < w; i++)
{
values[0] = x + i;
values[1] = y + j;
rat.transform(values, 0, values, 0, 1);
useBackground = false;
float[] inputValues = calculateInputValues(values[0], values[1]);
if (Float.isNaN(inputValues[0]) && Float.isNaN(inputValues[1]))
{
if (getBackground() == null)
{
continue;
}
useBackground = true;
}
else
{
// choose 1 of the 2 values
if (inputValues[0] >= 0 && inputValues[0] <= 1)
{
// both values are in the range -> choose the larger one
if (inputValues[1] >= 0 && inputValues[1] <= 1)
{
inputValue = Math.max(inputValues[0], inputValues[1]);
}
// first value is in the range, the second not -> choose first value
else
{
inputValue = inputValues[0];
}
}
else
{
// first value is not in the range,
// but the second -> choose second value
if (inputValues[1] >= 0 && inputValues[1] <= 1)
{
inputValue = inputValues[1];
}
// both are not in the range
else
{
if (extend[0] && extend[1])
{
inputValue = Math.max(inputValues[0], inputValues[1]);
}
else if (extend[0])
{
inputValue = inputValues[0];
}
else if (extend[1])
{
inputValue = inputValues[1];
}
else if (getBackground() != null)
{
useBackground = true;
}
else
{
continue;
}
}
}
// input value is out of range
if (inputValue > 1)
{
// extend shading if extend[1] is true and nonzero radius
if (extend[1] && coords[5] > 0)
{
inputValue = 1;
}
else
{
if (getBackground() == null)
{
continue;
}
useBackground = true;
}
}
// input value is out of range
else if (inputValue < 0)
{
// extend shading if extend[0] is true and nonzero radius
if (extend[0] && coords[2] > 0)
{
inputValue = 0;
}
else
{
if (getBackground() == null)
{
continue;
}
useBackground = true;
}
}
}
int value;
if (useBackground)
{
// use the given background color values
value = getRgbBackground();
}
else
{
int key = (int) (inputValue * factor);
value = colorTable[key];
}
int index = (j * w + i) * 4;
data[index] = value & 255;
value >>= 8;
data[index + 1] = value & 255;
value >>= 8;
data[index + 2] = value & 255;
data[index + 3] = 255;
}
}
raster.setPixels(0, 0, w, h, data);
return raster;
}
private float[] calculateInputValues(double x, double y)
{
// According to Adobes Technical Note #5600 we have to do the following
//
// x0, y0, r0 defines the start circle x1, y1, r1 defines the end circle
//
// The parametric equations for the center and radius of the gradient fill circle moving
// between the start circle and the end circle as a function of s are as follows:
//
// xc(s) = x0 + s * (x1 - x0) yc(s) = y0 + s * (y1 - y0) r(s) = r0 + s * (r1 - r0)
//
// Given a geometric coordinate position (x, y) in or along the gradient fill, the
// corresponding value of s can be determined by solving the quadratic constraint equation:
//
// [x - xc(s)]2 + [y - yc(s)]2 = [r(s)]2
//
// The following code calculates the 2 possible values of s
//
double p = -(x - coords[0]) * x1x0 - (y - coords[1]) * y1y0 - coords[2] * r1r0;
double q = (Math.pow(x - coords[0], 2) + Math.pow(y - coords[1], 2) - r0pow2);
double root = Math.sqrt(p * p - denom * q);
float root1 = (float) ((-p + root) / denom);
float root2 = (float) ((-p - root) / denom);
if (denom < 0)
{
return new float[] { root1, root2 };
}
else
{
return new float[] { root2, root1 };
}
}
/**
* Returns the coords values.
*/
public float[] getCoords()
{
return coords;
}
/**
* Returns the domain values.
*/
public float[] getDomain()
{
return domain;
}
/**
* Returns the extend values.
*/
public boolean[] getExtend()
{
return extend;
}
/**
* Returns the function.
*
* @throws java.io.IOException if we were not able to create the function.
*/
public PDFunction getFunction() throws IOException
{
return radialShadingType.getFunction();
}
}