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marc.joye@thomson.net

Abstract. This paper introduces “twisted Edwards curves,” a general-
ization of the recently introduced Edwards curves; shows that twisted
Edwards curves include more curves over finite fields, and in particular
every elliptic curve in Montgomery form; shows how to cover even more
curves via isogenies; presents fast explicit formulas for twisted Edwards
curves in projective and inverted coordinates; and shows that twisted
Edwards curves save time for many curves that were already expressible
as Edwards curves.
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1 Introduction

Edwards in [13], generalizing an example from Euler and Gauss, introduced an
addition law for the curves x2 + y2 = c2(1 + x2y2) over a non-binary field k.
Edwards showed that every elliptic curve over k can be expressed in the form
x2 + y2 = c2(1 + x2y2) if k is algebraically closed. However, over a finite field,
only a small fraction of elliptic curves can be expressed in this form.

Bernstein and Lange in [4] presented fast explicit formulas for addition and
doubling in coordinates (X : Y : Z) representing (x, y) = (X/Z, Y/Z) on an
Edwards curve, and showed that these explicit formulas save time in elliptic-
curve cryptography. Bernstein and Lange also generalized the addition law to
the curves x2 + y2 = c2(1 + dx2y2). This shape covers considerably more elliptic
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curves over a finite field than x2+y2 = c2(1+x2y2). All curves in the generalized
form are isomorphic to curves x2 + y2 = 1 + dx2y2.

In this paper, we further generalize the Edwards addition law to cover all
curves ax2 + y2 = 1 + dx2y2. Our explicit formulas for addition and doubling
are almost as fast in the general case as they are for the special case a = 1. We
show that our generalization brings the speed of the Edwards addition law to
every Montgomery curve; we also show that, over prime fields Fp where p ≡ 1
(mod 4), many Montgomery curves are not covered by the special case a = 1.
We further explain how to use isogenies to cover the odd part of every curve
whose group order is a multiple of 4; over prime fields Fp where p ≡ 3 (mod 4),
the special case a = 1 covers all Montgomery curves but does not cover all curves
whose group order is a multiple of 4. Our generalization is also of interest for
many curves that were already expressible in Edwards form; we explain how
the twisting can save time in arithmetic. See [2] for a successful application of
twisted Edwards curves to the elliptic-curve method of factorization.

Section 2 reviews Edwards curves, introduces twisted Edwards curves, and
shows that each twisted Edwards curve is (as the name would suggest) a twist
of an Edwards curve. Section 3 shows that every Montgomery curve can be
expressed as a twisted Edwards curve, and vice versa. Section 4 reports the
percentages of elliptic curves (over various prime fields) that can be expressed
as Edwards curves, twisted Edwards curves, “4 times odd” twisted Edwards
curves, etc. Section 5 uses isogenies to cover even more curves: specifically, it
shows that every curve with group order a multiple of 4 and with no point
of order 4 is 2-isogenous to a twisted Edwards curve. Section 6 generalizes the
Edwards addition law, the explicit formulas from [4], and the “inverted” formulas
from [5] to handle twisted Edwards curves. Section 7 analyzes the benefits of the
generalization for cryptographic applications.

2 Edwards Curves and Twisted Edwards Curves

In this section we briefly review Edwards curves and the Edwards addition law
at the level of generality of [4]. We then introduce twisted Edwards curves and
discuss their relationship to Edwards curves.

Review of Edwards Curves. Throughout the paper we consider elliptic curves
over a non-binary field k, i.e., a field k whose characteristic char(k) is not 2.

An Edwards curve over k is a curve E : x2+y2 = 1+dx2y2 where d ∈ k\{0, 1}.
The sum of two points (x1, y1), (x2, y2) on this Edwards curve E is

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
.

The point (0, 1) is the neutral element of the addition law. The point (0,−1)
has order 2. The points (1, 0) and (−1, 0) have order 4. The inverse of a point
(x1, y1) on E is (−x1, y1). The addition law is strongly unified: i.e., it can also
be used to double a point. The addition law also works for the neutral element
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and for inverses. If d is a nonsquare in k then, as proven in [4, Theorem 3.3],
this addition law is complete: it works for all pairs of inputs.

Twisted Edwards Curves. The existence of points of order 4 restricts the
number of elliptic curves in Edwards form over k. We embed the set of Edwards
curves in a larger set of elliptic curves of a similar shape by introducing twisted
Edwards curves.

Definition 2.1 (Twisted Edwards curve). Fix a field k with char(k) 6= 2.
Fix distinct nonzero elements a, d ∈ k. The twisted Edwards curve with coeffi-
cients a and d is the curve

EE,a,d : ax2 + y2 = 1 + dx2y2.

An Edwards curve is a twisted Edwards curve with a = 1.

In Section 3 we will show that every twisted Edwards curve is birationally
equivalent to an elliptic curve in Montgomery form, and vice versa. The elliptic
curve has j-invariant 16(a2 + 14ad + d2)3/ad(a− d)4.

Twisted Edwards Curves as Twists of Edwards Curves. The twisted
Edwards curve EE,a,d : ax2 +y2 = 1+dx2y2 is a quadratic twist of the Edwards
curve EE,1,d/a : x̄2 + ȳ2 = 1 + (d/a)x̄2ȳ2. The map (x̄, ȳ) 7→ (x, y) = (x̄/

√
a, ȳ)

is an isomorphism from EE,1,d/a to EE,a,d over k(
√

a). If a is a square in k then
EE,a,d is isomorphic to EE,1,d/a over k.

More generally, EE,a,d is a quadratic twist of EE,ā,d̄ for any ā, d̄ satisfying
d̄/ā = d/a. Conversely, every quadratic twist of a twisted Edwards curve is
isomorphic to a twisted Edwards curve; i.e., the set of twisted Edwards curves
is invariant under quadratic twists.

Furthermore, the twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2 is a
quadratic twist of (actually is birationally equivalent to) the twisted Edwards
curve EE,d,a : dx̄2 + ȳ2 = 1 + ax̄2ȳ2. The map (x̄, ȳ) 7→ (x, y) = (x̄, 1/ȳ) is a
birational equivalence from EE,d,a to EE,a,d. More generally, EE,a,d is a quadratic
twist of EE,ā,d̄ for any ā, d̄ satisfying d̄/ā = a/d. This generalizes the known fact,
used in [4, proof of Theorem 2.1], that EE,1,d is a quadratic twist of EE,1,1/d.

3 Montgomery Curves and Twisted Edwards Curves

Let k be a field with char(k) 6= 2. In this section we show that the set of
Montgomery curves over k is equivalent to the set of twisted Edwards curves
over k. We also analyze the extent to which this is true without twists.

Standard algorithms for transforming a Weierstrass curve into a Montgomery
curve if possible (see, e.g., [11, Section 13.2.3.c]) can be combined with our
explicit transformation from a Montgomery curve to a twisted Edwards curve.

Definition 3.1 (Montgomery curve). Fix a field k with char(k) 6= 2. Fix
A ∈ k \ {−2, 2} and B ∈ k \ {0}. The Montgomery curve with coefficients A and
B is the curve

EM,A,B : Bv2 = u3 + Au2 + u.
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Theorem 3.2. Fix a field k with char(k) 6= 2.
(i) Every twisted Edwards curve over k is birationally equivalent over k to a

Montgomery curve.
Specifically, fix distinct nonzero elements a, d ∈ k. The twisted Edwards curve

EE,a,d is birationally equivalent to the Montgomery curve EM,A,B, where A =
2(a + d)/(a− d) and B = 4/(a− d). The map (x, y) 7→ (u, v) = ((1 + y)/(1− y),
(1+ y)/(1− y)x) is a birational equivalence from EE,a,d to EM,A,B, with inverse
(u, v) 7→ (x, y) = (u/v, (u− 1)/(u + 1)).

(ii) Conversely, every Montgomery curve over k is birationally equivalent
over k to a twisted Edwards curve.

Specifically, fix A ∈ k \ {−2, 2} and B ∈ k \ {0}. The Montgomery curve
EM,A,B is birationally equivalent to the twisted Edwards curve EE,a,d, where
a = (A + 2)/B and d = (A− 2)/B.

Proof. (i) Note that A and B are defined, since a 6= d. Note further that A ∈
k\{−2, 2} and B ∈ k\{0}: if A = 2 then a+d = a−d so d = 0, contradiction; if
A = −2 then a+d = d−a so a = 0, contradiction. Thus EM,A,B is a Montgomery
curve.

The following script for the Sage computer-algebra system [24] checks that
the quantities u = (1 + y)/(1 − y) and v = (1 + y)/(1 − y)x satisfy Bv2 =
u3 + Au2 + u in the function field of the curve EE,a,d : ax2 + y2 = 1 + dx2y2:

R.<a,d,x,y>=QQ[]
A=2*(a+d)/(a-d)
B=4/(a-d)
S=R.quotient(a*x^2+y^2-(1+d*x^2*y^2))
u=(1+y)/(1-y)
v=(1+y)/((1-y)*x)
0==S((B*v^2-u^3-A*u^2-u).numerator())

The exceptional cases y = 1 and x = 0 occur for only finitely many points (x, y)
on EE,a,d. Conversely, x = u/v and y = (u − 1)/(u + 1); the exceptional cases
v = 0 and u = −1 occur for only finitely many points (u, v) on EM,A,B .

(ii) Note that a and d are defined, since B 6= 0. Note further that a 6= 0 since
A 6= −2; d 6= 0 since A 6= 2; and a 6= d. Thus EE,a,d is a twisted Edwards curve.
Furthermore

2
a + d

a− d
= 2

A+2
B + A−2

B
A+2

B − A−2
B

= A and
4

(a− d)
=

4
A+2

B − A−2
B

= B.

Hence EE,a,d is birationally equivalent to EM,A,B by (i). ut

Exceptional Points for the Birational Equivalence. The map (u, v) 7→
(u/v, (u− 1)/(u + 1)) from EM,A,B to EE,a,d in Theorem 3.2 is undefined at the
points of EM,A,B : Bv2 = u3 + Au2 + u with v = 0 or u + 1 = 0. We investigate
these points in more detail:
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– The point (0, 0) on EM,A,B corresponds to the affine point of order 2 on
EE,a,d, namely (0,−1). This point and (0, 1) are the only exceptional points
of the inverse map (x, y) 7→ ((1 + y)/(1− y), (1 + y)/(1− y)x), where (0, 1)
is mapped to the point at infinity.

– If (A + 2)(A− 2) is a square (i.e., if ad is a square) then there are two more
points with v = 0, namely ((−A±

√
(A + 2)(A− 2))/2, 0). These points have

order 2. These points correspond to two points of order 2 at infinity on the
desingularization of EE,a,d.

– If (A − 2)/B is a square (i.e., if d is a square) then there are two points
with u = −1, namely (−1,±

√
(A− 2)/B). These points have order 4. These

points correspond to two points of order 4 at infinity on the desingularization
of EE,a,d.

Eliminating the Twists. Every Montgomery curve EM,A,B is birationally
equivalent to a twisted Edwards curve by Theorem 3.2, and therefore to a
quadratic twist of an Edwards curve. In other words, there is a quadratic twist
of EM,A,B that is birationally equivalent to an Edwards curve.

We now state two situations in which twisting is not necessary. Theorem 3.3
states that every elliptic curve having a point of order 4 is birationally equivalent
to an Edwards curve. Theorem 3.4 states that, over a finite field k with #k ≡ 3
(mod 4), every Montgomery curve is birationally equivalent to an Edwards curve.

Some special cases of these results were already known. Bernstein and Lange
proved in [4, Theorem 2.1(1)] that every elliptic curve having a point of order 4 is
birationally equivalent to a twist of an Edwards curve, and in [4, Theorem 2.1(3)]
that, over a finite field, every elliptic curve having a point of order 4 and a unique
point of order 2 is birationally equivalent to an Edwards curve. We prove that
the twist in [4, Theorem 2.1(1)] is unnecessary, and that the unique point of
order 2 in [4, Theorem 2.1(3)] is unnecessary.

Theorem 3.3. Fix a field k with char(k) 6= 2. Let E be an elliptic curve over
k. The group E(k) has an element of order 4 if and only if E is birationally
equivalent over k to an Edwards curve.

Proof. Assume that E is birationally equivalent over k to an Edwards curve
EE,1,d. The elliptic-curve addition law corresponds to the Edwards addition law;
see [4, Theorem 3.2]. The point (1, 0) on EE,1,d has order 4, so E must have a
point of order 4.

Conversely, assume that E has a point (u4, v4) of order 4. As in [4, Theo-
rem 2.1, proof], observe that u4 6= 0 and v4 6= 0; assume without loss of generality
that E has the form v2 = u3 + (v2

4/u2
4 − 2u4)u2 + u2

4u; define d = 1 − 4u3
4/v2

4 ;
and observe that d /∈ {0, 1}.

The following script for the Sage computer-algebra system checks that the
quantities x = v4u/u4v and y = (u − u4)/(u + u4) satisfy x2 + y2 = 1 + dx2y2

in the function field of E:

R.<u,v,u4,v4>=QQ[]
d=1-4*u4^3/v4^2
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S=R.quotient((v^2-u^3-(v4^2/u4^2-2*u4)*u^2-u4^2*u).numerator())
x=v4*u/(u4*v)
y=(u-u4)/(u+u4)
0==S((x^2+y^2-1-d*x^2*y^2).numerator())

The exceptional cases u4v = 0 and u = −u4 occur for only finitely many points
(u, v) on E. Conversely, u = u4(1 + y)/(1 − y) and v = v4(1 + y)/(1 − y)x; the
exceptional cases y = 1 and x = 0 occur for only finitely many points (x, y) on
EE,1,d.

Therefore the rational map (u, v) 7→ (x, y) = (v4u/u4v, (u − u4)/(u + u4)),
with inverse (x, y) 7→ (u, v) = (u4(1+y)/(1−y), v4(1+y)/(1−y)x), is a birational
equivalence from E to the Edwards curve EE,1,d. ut

Theorem 3.4. If k is a finite field with #k ≡ 3 (mod 4) then every Mont-
gomery curve over k is birationally equivalent over k to an Edwards curve.

Proof. Fix A ∈ k \ {−2, 2} and B ∈ k \ {0}. We will use an idea of Okeya, Ku-
rumatani, and Sakurai [21], building upon the observations credited to Suyama
in [20, page 262], to prove that the Montgomery curve EM,A,B has a point of
order 4. This fact can be extracted from [21, Theorem 1] when #k is prime, but
to keep this paper self-contained we include a direct proof.

Case 1: (A + 2)/B is a square. Then (as mentioned before) EM,A,B has a
point (1,

√
(A + 2)/B) of order 4.

Case 2: (A + 2)/B is a nonsquare but (A − 2)/B is a square. Then EM,A,B

has a point (−1,
√

(A− 2)/B) of order 4.
Case 3: (A+2)/B and (A− 2)/B are nonsquares. Then (A+2)(A− 2) must

be square, since k is finite. The Montgomery curve EM,A,A+2 has three points
(0, 0), ((−A ±

√
(A + 2)(A− 2))/2, 0) of order 2, and a point (1, 1) of order 4,

so #EM,A,A+2(k) ≡ 0 (mod 8). Furthermore, EM,A,B is a nontrivial quadratic
twist of EM,A,A+2, so #EM,A,B(k) + #EM,A,A+2(k) = 2#k + 2 ≡ 0 (mod 8).
Therefore #EM,A,B(k) ≡ 0 (mod 8). The curve EM,A,B cannot have more than
three points of order 2, so it must have a point of order 4.

In every case EM,A,B has a point of order 4. By Theorem 3.3, EM,A,B is
birationally equivalent to an Edwards curve. ut

This theorem does not generalize to #k ≡ 1 (mod 4). For example, the
Montgomery curve EM,9,1 over F17 has order 20 and group structure isomorphic
to Z/2 × Z/10. This curve is birationally equivalent to the twisted Edwards
curve EE,11,7, but it does not have a point of order 4, so it is not birationally
equivalent to an Edwards curve.

Theorem 3.5. Let k be a finite field with #k ≡ 1 (mod 4). Let EM,A,B be a
Montgomery curve so that (A + 2)(A− 2) is a square and let δ be a nonsquare.

Exactly one of EM,A,B and its nontrivial quadratic twist EM,A,δB is bira-
tionally equivalent to an Edwards curve.

In particular, EM,A,A+2 is birationally equivalent to an Edwards curve.
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Proof. Since (A + 2)(A − 2) is a square both EM,A,B and EM,A,δB contain a
subgroup isomorphic to Z/2Z×Z/2Z. This subgroup accounts for a factor of 4
in the group order. Since #EM,A,B(k) + #EM,A,δB(k) = 2#k + 2 ≡ 4 (mod 8)
exactly one of #EM,A,B(k) and #EM,A,δB(k) is divisible by 4 but not by 8. That
curve cannot have a point of order 4 while the other one has a point of order 4.
The first statement follows from Theorem 3.3.

The second statement also follows from Theorem 3.3, since the point (1, 1)
on EM,A,A+2 has order 4. ut

4 Statistics

It is well known that, when p is a large prime, there are approximately 2p
isomorphism classes of elliptic curves over the finite field Fp. How many of these
elliptic curves are birationally equivalent to twisted Edwards curves ax2 + y2 =
1 + dx2y2? How many are birationally equivalent to Edwards curves x2 + y2 =
1 + dx2y2? How many are birationally equivalent to complete Edwards curves,
i.e., Edwards curves with nonsquare d? How many are birationally equivalent to
original Edwards curves x2 + y2 = c2(1+x2y2)? How do the statistics vary with
the number of powers of 2 in the group order?

We computed the answers for various primes p by enumerating all complete
Edwards curves, all Edwards curves, all twisted Edwards curves (with a limited
set of a’s covering all isomorphism classes), and all elliptic curves in Weierstrass
form (with similar limitations). We transformed each curve to a birationally
equivalent elliptic curve E and then computed (#E, j(E)), where #E is the
number of points on E and j(E) is the j-invariant of E. Recall that j(E) = j(E′)
if and only if E′ is a twist of E, and that twists are distinguished by #E except
for a few isomorphism classes.

Some parts of these experiments have been carried out before. See, e.g., [15].
However, the information in the literature is not sufficient for our comparison of
Edwards curves (and complete Edwards curves) to twisted Edwards curves.

Answers for Primes p ≡ 1 (mod 4). For p = 1009 we found

– 43 different pairs (#E, j(E)) for original Edwards curves,
– 504 different pairs (#E, j(E)) for complete Edwards curves,
– 673 different pairs (#E, j(E)) for Edwards curves,
– 842 different pairs (#E, j(E)) for twisted Edwards curves,
– 842 different pairs (#E, j(E)) for elliptic curves with group order divisible

by 4, and
– 2014 different pairs (#E, j(E)) for elliptic curves.
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We looked more closely at the number of powers of 2 dividing #E and observed
the following distribution:

Curves Total odd 2 · odd 4 · odd 8 · odd 16 · odd 32 · odd 64 · odd
original Edwards 43 0 0 0 0 23 6 6

complete Edwards 504 0 0 252 130 66 24 16
Edwards 673 0 0 252 195 122 42 30

twisted Edwards 842 0 0 421 195 122 42 30
4 divides group order 842 0 0 421 195 122 42 30

all 2014 676 496 421 195 122 42 30

We observed similar patterns for more than 1000 tested primes p ≡ 1 (mod 4):

Curves Total odd 2 · odd 4 · odd 8 · odd
original Edwards ≈ (1/24)p 0 0 0 0

complete Edwards ≈ (1/2)p 0 0 ≈ (1/4)p ≈ (1/8)p
Edwards ≈ (2/3)p 0 0 ≈ (1/4)p ≈ (3/16)p

twisted Edwards ≈ (5/6)p 0 0 ≈ (5/12)p ≈ (3/16)p
4 divides group order ≈ (5/6)p 0 0 ≈ (5/12)p ≈ (3/16)p

all ≈ 2p ≈ (2/3)p ≈ (1/2)p ≈ (5/12)p ≈ (3/16)p

We do not claim novelty for statistics regarding the set of Montgomery curves (in
other words, the set of twisted Edwards curves) and the set of all elliptic curves;
all of these statistics have been observed before, and some of them have been
proven. Furthermore, the (1/2)p for complete Edwards curves was pointed out
in [4, Abstract]. However, the (2/3)p, (1/4)p, and (3/16)p for Edwards curves
appear to be new observations. We include the old statistics as a basis for com-
parison.

Answers for Primes p ≡ 3 (mod 4). For primes p ≡ 3 (mod 4) the patterns
are different, as one would expect from Theorems 3.4 and 3.5. For example, here
is the analogous table for p = 1019:

Curves Total odd 2 · odd 4 · odd 8 · odd 16 · odd 32 · odd 64 · odd
original Edwards 254 0 0 0 127 68 33 10

complete Edwards 490 0 0 236 127 68 33 10
Edwards 744 0 0 236 254 136 66 20

twisted Edwards 744 0 0 236 254 136 66 20
4 divides group order 822 0 0 314 254 136 66 20

all 2012 680 510 314 254 136 66 20

We observed similar patterns for more than 1000 tested primes p ≡ 3 (mod 4):

Curves Total odd 2 · odd 4 · odd 8 · odd
original Edwards ≈ (1/4)p 0 0 0 ≈ (1/8)p

complete Edwards ≈ (1/2)p 0 0 ≈ (1/4)p ≈ (1/8)p
Edwards ≈ (3/4)p 0 0 ≈ (1/4)p ≈ (1/4)p

twisted Edwards ≈ (3/4)p 0 0 ≈ (1/4)p ≈ (1/4)p
4 divides group order ≈ (5/6)p 0 0 ≈ (1/3)p ≈ (1/4)p

all ≈ 2p ≈ (2/3)p ≈ (1/2)p ≈ (1/3)p ≈ (1/4)p
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As above, we do not claim novelty for statistics regarding the set of Montgomery
curves and the set of all elliptic curves; we include these statistics as a basis for
comparison.

Near-Prime Group Orders. We also looked at how often the odd part of #E
was prime and observed the following distribution for p = 1009:

Curves prime 2 · prime 4 · prime 8 · prime 16 · prime 32 · prime
original Edwards 0 0 0 0 8 2

complete Edwards 0 0 64 42 28 8
Edwards 0 0 64 63 50 14

twisted Edwards 0 0 102 63 50 14
4 divides group order 0 0 102 63 50 14

all 189 98 102 63 50 14

Here is the analogous table for p = 1019:

Curves prime 2 · prime 4 · prime 8 · prime 16 · prime 32 · prime
original Edwards 0 0 0 25 22 9

complete Edwards 0 0 48 25 22 9
Edwards 0 0 48 50 44 18

twisted Edwards 0 0 48 50 44 18
4 divides group order 0 0 64 50 44 18

all 148 100 64 50 44 18

Of course, larger primes p have smaller chances of prime #E, smaller chances of
prime #E/2, etc.

5 Isogenies: Even More Curves

A curve that is not isomorphic to an Edwards curve, and not even isomorphic to
a twisted Edwards curve, might nevertheless be isogenous to a twisted Edwards
curve. This section shows, in particular, that every curve with three points of
order 2 is 2-isogenous to a twisted Edwards curve. This section gives an example
of a curve that is not birationally equivalent to a twisted Edwards curve but that
is 2-isogenous to a twisted Edwards curve. This section also discusses the use
of 2-isogenies for scalar multiplication in an odd-order subgroup of the original
curve.

Our use of isogenies to expand the coverage of twisted Edwards curves is
analogous to the use of isogenies by Brier and Joye in [9] to expand the coverage
of “a4 = −3” Weierstrass curves. We comment that isogenies are also useful
for other curve shapes. For example, over fields Fp with p ≡ 3 (mod 4), every
elliptic curve with a point of order 4 is 2-isogenous to a Jacobi-quartic curve
v2 = u4 − 2δu2 + 1; see [6], [12], [16], [17], and [3] for fast explicit formulas to
perform computations on curves of this shape.
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Theorem 5.1. Fix a field k with char(k) 6= 2. Every elliptic curve over k having
three k-rational points of order 2 is 2-isogenous over k to a twisted Edwards
curve.

Proof. Let E be an elliptic curve over k having three k-rational points of order 2.
Write E in Weierstrass form v2 = u3 + a2u

2 + a4u + a6, with points (u0, 0) and
(u1, 0) and (u2, 0) of order 2. Assume without loss of generality that u0 = 0; to
handle the general case, replace u by u− u0.

The polynomial u3 + a2u
2 + a4u + a6 has distinct roots 0, u1, u2 so it factors

as u(u− u1)(u− u2); i.e., E has the form

v2 = u3 − (u1 + u2)u2 + (u1u2)u.

Therefore E is 2-isogenous to the elliptic curve Ē given by

v̄2 = ū3 + 2(u1 + u2)ū2 + (u1 − u2)2ū;

see, e.g., [22, Chapter III, Example 4.5]. The 2-isogeny from E to Ē is given by

ū =
v2

u2
and v̄ =

v(u1u2 − u2)
u2

.

The dual 2-isogeny from Ē to E is given by

u =
v̄2

4ū2
and v =

v̄((u1 − u2)2 − ū2)
8ū2

.

The elliptic curve Ē is isomorphic to EM,2(u1+u2)/(u1−u2),1/(u1−u2), so by
Theorem 3.2 it is birationally equivalent to EE,4u1,4u2 . Therefore the original
elliptic curve E is 2-isogenous to EE,4u1,4u2 . ut

A Numerical Example. Over fields Fp with p ≡ 1 (mod 4), every curve with
three points of order 2 is already birationally equivalent to a twisted Edwards
curve. However, over fields Fp with p ≡ 3 (mod 4), a curve that has three points
of order 2 is not birationally equivalent to a twisted Edwards curve unless it has
a point of order 4; see Theorem 3.4. Theorem 5.1 applies whether or not there
is a point of order 4.

Consider, for example, the elliptic curve given in [7, Appendix A.1, Exam-
ple 11]. This is a Weierstrass-form curve y2 = x3 + ax + b having n points over
a prime field Fp with p ≡ 3 (mod 4), where

p = 704884506943271274200281641864861869675382281803874374287823
572590636465776430902994937116627154697596008175843994317887,

a = 5,

b = 386662904220884846158118978755296957588161144581227227632608
477394833508761427897436830503346162919463497627079364752199,

n/4 = 176221126735817818550070410466215467418845570450968593571955
849984388374202661367791144000780545901540071164046444060971.
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There are three roots of x3 + ax + b modulo p, so this elliptic curve has three
points of order 2. It is 2-isogenous to a twisted Edwards curve by Theorem 5.1.
On the other hand, it is not birationally equivalent to a Montgomery curve,
or to a twisted Edwards curve; if it were, it would have a point of order 4 by
Theorem 3.4, so n would have to be a multiple of 8.

The most important operation in elliptic-curve cryptography is scalar multi-
plication in a prime-order subgroup of an elliptic curve. Consider a point P in
the subgroup of order n/4 of the elliptic curve shown above; n/4 is prime. To
compute Q = mP for any integer m, we do the following:

– compute P ′ = φ(P ), where φ is the 2-isogeny (shown explicitly in the proof
of Theorem 5.1) from this elliptic curve to a twisted Edwards curve;

– compute Q′ = ((m/2) mod (n/4))P ′ on the twisted Edwards curve; and
– compute Q = φ̂(Q′), where φ̂ is the dual isogeny.

The isogeny and dual isogeny are easy to evaluate, so most of the work consists
of the scalar multiplication on the twisted Edwards curve.

6 Arithmetic on Twisted Edwards Curves

Let k be a field with char(k) 6= 2. In this section we present fast explicit formulas
for addition and doubling on twisted Edwards curves over k.

The Twisted Edwards Addition Law. Let (x1, y1), (x2, y2) be points on the
twisted Edwards curve EE,a,d : ax2 + y2 = 1 + dx2y2. The sum of these points
on EE,a,d is

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1− dx1x2y1y2

)
.

The neutral element is (0, 1), and the negative of (x1, y1) is (−x1, y1).
For the correctness of the addition law observe that it coincides with the

Edwards addition law on x̄2 +y2 = 1+(d/a)x̄2y2 with x̄ =
√

ax which is proven
correct in [4, Section 3].

These formulas also work for doubling. These formulas are complete (i.e.,
have no exceptional cases) if a is a square in k and d is a nonsquare in k. The
latter follows from EE,a,d being isomorphic to EE,1,d/a; d/a being a nonsquare
in k and from [4, Theorem 3.1] which showed that the Edwards addition law is
complete on EE,1,d′ if d′ is a nonsquare.

Projective Twisted Edwards Coordinates. To avoid inversions we work on
the projective twisted Edwards curve

(aX2 + Y 2)Z2 = Z4 + dX2Y 2.

For Z1 6= 0 the homogeneous point (X1 : Y1 : Z1) represents the affine point
(X1/Z1, Y1/Z1) on EE,a,d.
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We checked the following explicit formulas for addition and doubling with
the help of the Sage computer-algebra system, following the approach of the
Explicit-Formulas Database [3].

Addition in Projective Twisted Coordinates. The following formulas com-
pute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) in 10M + 1S + 2D + 7add,
where the 2D are one multiplication by a and one by d:

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2; E = dC ·D;
F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D);
Y3 = A ·G · (D − aC); Z3 = F ·G.

Doubling in Projective Twisted Coordinates. The following formulas com-
pute (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1) in 3M + 4S + 1D + 7add, where the 1D
is a multiplication by a:

B = (X1 + Y1)2; C = X2
1 ; D = Y 2

1 ; E = aC;F := E + D; H = Z2
1 ;

J = F − 2H; X3 = (B − C −D) · J ; Y3 = F · (E −D); Z3 = F · J.

Clearing Denominators in Projective Coordinates. Here is an alternative
approach to arithmetic on the twisted Edwards curve EE,a,d when a is a square
in k.

The curve EE,a,d : ax̄2 + ȳ2 = 1 + dx̄2ȳ2 is isomorphic to the Edwards curve
EE,1,d/a : x2 + y2 = 1 + (d/a)x2y2 by x =

√
ax̄ and y = ȳ; see Section 2. The

following formulas add on EE,1,d/a using 10M+1S+3D+7add, where the 3D
are two multiplications by a and one by d:

A = Z1 · Z2; B = aA2; H = aA; C = X1 ·X2; D = Y1 · Y2; E = dC ·D;
F = B − E; G = B + E; X3 = H · F · ((X1 + Y1) · (X2 + Y2)− C −D);
Y3 = H ·G · (D − C); Z3 = F ·G.

One can double on EE,1,d/a with 3M + 4S + 6add, independent of the curve
coefficient d/a, using the formulas from [4, Section 4].

Our addition formulas for EE,1,d/a are slower (by 1 multiplication by a) than
our addition formulas for EE,a,d. On the other hand, doubling for EE,1,d/a is
faster (by 1 multiplication by a) than doubling for EE,a,d. Some applications
(such as batch signature verification) have more additions than doublings, while
other applications have more doublings than additions, so all of the formulas are
of interest.

Inverted Twisted Edwards Coordinates. Another way to avoid inversions
is to let a point (X1 : Y1 : Z1) on the curve

(X2 + aY 2)Z2 = X2Y 2 + dZ4

with X1Y1Z1 6= 0 correspond to the affine point (Z1/X1, Z1/Y1) on EE,a,d.
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Bernstein and Lange introduced these inverted coordinates in [5], for the case
a = 1, and observed that the coordinates save time in addition. We generalize
to arbitrary a.

Addition in Inverted Twisted Coordinates. The following formulas com-
pute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) in 9M + 1S + 2D + 7add,
where the 2D are one multiplication by a and one by d:

A = Z1 · Z2; B = dA2; C = X1 ·X2; D = Y1 · Y2; E = C ·D;
H = C − aD; I = (X1 + Y1) · (X2 + Y2)− C −D;

X3 = (E + B) ·H; Y3 = (E −B) · I; Z3 = A ·H · I.

Doubling in Inverted Twisted Coordinates. The following formulas com-
pute (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1) in 3M + 4S + 2D + 6add, where the 2D
are one multiplication by a and one by 2d:

A = X2
1 ; B = Y 2

1 ; U = aB; C = A + U ; D = A− U ;
E = (X1 + Y1)2 −A−B; X3 = C ·D; Y3 = E · (C − 2dZ2

1 ); Z3 = D · E.

Clearing Denominators in Inverted Coordinates. The following formulas
add in inverted coordinates on EE,1,d/a using 9M+ 1S+ 3D+ 7add, where the
3D are two multiplications by a and one by d:

A = Z1 · Z2; B = dA2; C = X1 ·X2; D = Y1 · Y2; E = aC ·D;
H = C −D; I = (X1 + Y1) · (X2 + Y2)− C −D;

X3 = (E + B) ·H; Y3 = (E −B) · I; Z3 = aA ·H · I.

The following formulas double in inverted coordinates on EE,1,d/a using 3M+
4S + 3D + 5add, where the 3D are two multiplications by a and one by 2d:

A = X2
1 ; B = Y 2

1 ; C = A + B; D = A−B; E = (X1 + Y1)2 − C;
F = aC; Z3 = aD · E; X3 = F ·D; Y3 = E · (F − 2dZ2

1 ).

More Parameters. One could consider the more general curve equation

ax2 + y2 = c2(1 + dx2y2)

with addition law

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − ax1x2

c(1− dx1x2y1y2)

)
.

We do not present explicit formulas for this generalization; these curves are
always isomorphic to twisted Edwards curves. We comment, however, that there
exist curves for which the extra parameter saves a little time.
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7 Edwards Versus Twisted Edwards

We introduced twisted Edwards curves as a generalization of Edwards curves. Is
this generalization actually useful for cryptographic purposes?

Section 4 showed that, over prime fields Fp where p ≡ 1 (mod 4), twisted
Edwards curves cover considerably more elliptic curves than Edwards curves do.
In particular, for “4 times odd” elliptic curves over such prime fields, the coverage
of Edwards curves is only about 60% of the coverage of twisted Edwards curves.
One can choose a to be very small, making twisted Edwards curves essentially
as fast as Edwards curves and thus bringing the speed of the Edwards addition
law to a wider variety of elliptic curves.

Even when an elliptic curve can be expressed in Edwards form, expressing
the same curve in twisted Edwards form often saves time in arithmetic. In this
section we review the issues faced by implementors aiming for top speed. We
give examples of the impact of twisted Edwards curves for implementors who
are faced with externally specified curves, and for implementors who are free to
choose their own curves.

How Twisting Can Save Time. The following table summarizes the speeds of
addition and doubling in standard (projective) coordinates on Edwards curves,
standard coordinates on twisted Edwards curves, inverted coordinates on Ed-
wards curves, and inverted coordinates on twisted Edwards curves:

Coordinates Source of Addition Doubling
algorithms

Edwards [4, §4] 10M+1S+1D 3M+4S
(mult by d/a)

Edwards this paper 10M+1S+3D 3M+4S
(clearing denoms) (mult by a, a, d)

Twisted Edwards this paper 10M+1S+2D 3M+4S+1D
(mult by a, d) (mult by a)

Inverted Edwards [5, §§4–5] 9M+1S+1D 3M+4S+1D
(mult by d/a) (mult by d/a)

Inverted Edwards this paper 9M+1S+3D 3M+4S+3D
(clearing denoms) (mult by a, a, d) (mult by a, a, d)

Inverted twisted Edwards this paper 9M+1S+2D 3M+4S+2D
(mult by a, d) (mult by a, d)

If a curve E is expressible as an Edwards curve, is there any reason to consider
more general expressions of E as a twisted Edwards curve? One might think,
from a glance at the above table, that the answer is no: twisting appears to lose
1D in every coordinate system and for every group operation without gaining
anything. However, there are many situations where the answer is yes!

Specifically, instead of performing computations on the Edwards curve EE,1,d̄

over k, one can perform computations on the twisted Edwards curve EE,a,d over
k for any (a, d) such that d̄ = d/a and such that a is a square in k. (It is
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convenient for computing the isomorphism, but certainly not essential, for a to
be the square of a small integer.) In particular, many curves over Fp have d̄
expressible as a ratio d/a where both d and a are small, much smaller than any
integer congruent to d̄ modulo p. In the non-twisted Edwards case the 1D in the
table above is a multiplication by d̄ while the 2D in the twisted Edwards case
are one multiplication by d and one multiplication by a, often taking less time
than a multiplication by d̄.

Consider, for example, the curve “Curve25519” used in [1] to set speed
records for elliptic-curve Diffie-Hellman before the advent of Edwards curves.
Curve25519 is a particular elliptic curve over Fp where p = 2255 − 19. Bernstein
and Lange point out in [4, Section 2] that Curve25519 can be expressed as an
Edwards curve x2 +y2 = 1+(121665/121666)x2y2. We point out that this curve
is isomorphic to the twisted Edwards curve 121666x2 + y2 = 1 + 121665x2y2,
and that the twisted Edwards curve provides faster arithmetic. Each addition
on the twisted Edwards curve involves only one multiplication by 121665 and
one multiplication by 121666, which together are faster than a multiplication by
20800338683988658368647408995589388737092878452977063003340006470870624536394
≡ 121665/121666 (mod p).

This phenomenon is not an accident. Montgomery curves EM,A,B are nor-
mally chosen so that (A + 2)/4 is a small integer: this speeds up u-coordinate
arithmetic, as Montgomery pointed out in [20, page 261, bottom]. The corre-
sponding twisted Edwards curves have d/a equal to (A− 2)/(A + 2), a ratio of
small integers, allowing fast arithmetic in twisted Edwards form.

The decision between Edwards curves and twisted Edwards curves interacts
with the decision between standard Edwards coordinates and inverted Edwards
coordinates. Frequent additions make inverted Edwards coordinates more im-
pressive; large a, d make inverted Edwards coordinates less impressive.

Choosing Twisted Edwards Curves. Often implementors are free to choose
their own curves for the best possible speed. To illustrate the benefits of this
flexibility we studied “small” twisted Edwards curves modulo several primes of
cryptographic size: 2160 − 47, the largest prime below 2160; 2192 − 264 − 1, the
prime used for NIST’s P-192 elliptic curve; 2224 − 296 + 1, the prime used for
NIST’s P-224 elliptic curve; and 2255− 19, the prime used in [1]. Specifically, we
enumerated twisted Edwards curves EE,a,d for thousands of small pairs (a, d),
and we checked which curves had small cofactors over Fp, i.e., had group orders
h·prime where the cofactor h is small. We give some examples of twisted Edwards
curves with small cofactor, tiny a, and tiny d, supporting exceptionally fast
arithmetic.

For p = 2192 − 264 − 1, the twisted Edwards curve EE,102,47 : 102x2 + y2 =
1 + 47x2y2 has cofactor 4. Arithmetic on EE,102,47 is impressively fast, and the
cofactor is minimal. The nontrivial quadratic twist EE,1122,517 has cofactor only
28, protecting against the active small-subgroup attacks discussed in (e.g.) [1,
Section 3].

For p = 2224 − 296 + 1, the twisted Edwards curve EE,12,1 has cofactor
3456, and its nontrivial quadratic twist EE,132,11 has cofactor 20. The coefficients
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a = 12 and d = 1 here are spectacularly small. The cofactor 3456 is not minimal
but can still be considered for cryptographic purposes.

If active small-subgroup attacks are stopped in other ways then one can
find even smaller pairs (a, d). For p = 2160 − 47 the twisted Edwards curve
EE,23,−6 has cofactor 4; for comparison, the first Edwards curve we found with
small parameter d and with cofactor 4 over the same field was EE,1,268. For
p = 2255 − 19 the twisted Edwards curve EE,29,−28 has cofactor 4 and the
twisted Edwards curve EE,25,2 has cofactor 8.
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